1
|
Chen Y, Liao G, Ma T, Li L, Yang J, Shen B, Lu Y, Si H. YY1/miR-140-5p/Jagged1/Notch axis mediates cartilage progenitor/stem cells fate reprogramming in knee osteoarthritis. Int Immunopharmacol 2023; 121:110438. [PMID: 37295026 DOI: 10.1016/j.intimp.2023.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/11/2023]
Abstract
Osteoarthritis is a multifactorial disease characterized by cartilage degeneration, while cartilage progenitor/stem cells (CPCs) are responsible for endogenous cartilage repair. However, the relevant regulatory mechanisms of CPCs fate reprogramming in OA are rarely reported. Recently, we observed fate disorders in OA CPCs and found that microRNA-140-5p (miR-140-5p) protects CPCs from fate changes in OA. This study further mechanistically investigated the upstream regulator and downstream effectors of miR-140-5p in OA CPCs fate reprogramming. As a result, luciferase reporter assay and validation assays revealed that miR-140-5p targets Jagged1 and inhibits Notch signaling in human CPCs, and the loss-/gain-of-function experiments and rescue assays discovered that miR-140-5p improves OA CPCs fate, but this effect can be counteracted by Jagged1. Moreover, increased transcription factor Ying Yang 1 (YY1) was associated with OA progression, and YY1 could disturb CPCs fate via transcriptionally repressing miR-140-5p and enhancing the Jagged1/Notch signaling. Finally, the relevant changes and mechanisms of YY1, miR-140-5p, and Jagged1/Notch signaling in OA CPCs fate reprogramming were validated in rats. Conclusively, this study identified a novel YY1/miR-140-5p/Jagged1/Notch signaling axis that mediates OA CPCs fate reprogramming, wherein YY1 and Jagged1/Notch signaling exhibits an OA-stimulative role, and miR-140-5p plays an OA-protective effect, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Ma
- Department of Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haibo Si
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Yang H. Silencing of Long Non-coding RNA H19 Alleviates Lipopolysaccharide (LPS)-induced Apoptosis and Inflammation Injury by Regulating miR-140-5p/TLR4 Axis in Cell Models of Pneumonia. Curr Mol Med 2023; 23:275-284. [PMID: 35392782 DOI: 10.2174/1566524022666220407100949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Mounting studies have clarified the link between long non-coding RNAs (lncRNAs) and pneumonia. This research aims to probe the function and regulatory mechanism of lncRNA H19 in lipopolysaccharide (LPS)-induced cell models of pneumonia. METHODS WI-38 cells were exposed to LPS for 12 h to mimic cell models of pneumonia. The relative expression of H19, miR-140-5p, and toll-like receptor 4 (TLR4) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability was detected by MTT assay. The protein expression of apoptosis-associated proteins (Bax and Bcl-2) and TLR4 were determined by western blot. Moreover, the content of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). The target relationship between miR- 140-5p and H19/ TLR4 was confirmed by Dual luciferase reporter (DLR) assay. RESULTS LncRNA H19 and TLR4 were up-regulated, while miR-140-5p was downregulated in peripheral blood of patients with pneumonia and LPS-treated WI-38 cells compared with their controls. Silencing of H19 or miR-140-5p mimics facilitated cell viability, whereas repressed apoptosis and reduced content of TNF-α, IL-6, and IL-1β in LPS-induced WI-38 cells. H19 targeted miR-140-5p and it inversely regulated miR-140- 5p expression. MiR-140-5p targeted TLR4 and it inversely regulated TLR4 expression. H19 positively regulated TLR4 expression. Moreover, inhibition of miR-140-5p or overexpression of TLR4 reversed the effects of H19 silencing on cell viability, inflammation, and apoptosis in LPS-induced WI-38 cells. CONCLUSION Silencing of H19 inhibited apoptosis and inflammation by miR-140- 5p/TLR4 pathway in LPS-induced WI-38 cells.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pediatric, Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132011, China
| |
Collapse
|
3
|
Yan Y, Yuan J, Luo X, Yu X, Lu J, Hou W, He X, Zhang L, Cao J, Wang H. microRNA-140 Regulates PDGFRα and Is Involved in Adipocyte Differentiation. Front Mol Biosci 2022; 9:907148. [PMID: 35832736 PMCID: PMC9271708 DOI: 10.3389/fmolb.2022.907148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the studies of the role of microRNAs in adipogenesis and adipocyte development and the corresponding molecular mechanisms have received great attention. In this work, we investigated the function of miR-140 in the process of adipogenesis and the molecular pathways involved, and we found that adipogenic treatment promoted the miR-140-5p RNA level in preadipocytes. Over-expression of miR-140-5p in preadipocytes accelerated lipogenesis along with adipogenic differentiation by transcriptional modulation of adipogenesis-linked genes. Meanwhile, silencing endogenous miR-140-5p dampened adipogenesis. Platelet-derived growth factor receptor alpha (PDGFRα) was shown to be a miR-140-5p target gene. miR-140-5p over-expression in preadipocyte 3T3-L1 diminished PDGFRα expression, but silencing of miR-140-5p augmented it. In addition, over-expression of PDGFRα suppressed adipogenic differentiation and lipogenesis, while its knockdown enhanced these biological processes of preadipocyte 3T3-L1. Altogether, our current findings reveal that miR-140-5p induces lipogenesis and adipogenic differentiation in 3T3-L1 cells by targeting PDGFRα, therefore regulating adipogenesis. Our research provides molecular targets and a theoretical basis for the treatment of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiahui Yuan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyan He
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Liping Zhang
- Department of Medicine, Nephrology Division, Baylor College of Medicine, Houston, GA, United States
| | - Jing Cao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Haidong Wang,
| |
Collapse
|
4
|
Hippo signaling pathway and respiratory diseases. Cell Death Dis 2022; 8:213. [PMID: 35443749 PMCID: PMC9021242 DOI: 10.1038/s41420-022-01020-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1 (MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain (TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory diseases.
Collapse
|
5
|
Xu B, Xu G, Yu Y, Lin J. The role of TGF-β or BMPR2 signaling pathway-related miRNA in pulmonary arterial hypertension and systemic sclerosis. Arthritis Res Ther 2021; 23:288. [PMID: 34819148 PMCID: PMC8613994 DOI: 10.1186/s13075-021-02678-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication of connective tissue disease (CTD), causing death in systemic sclerosis (SSc). The past decade has yielded many scientific insights into microRNA (miRNAs) in PAH and SSc. This growth of knowledge has well-illustrated the complexity of microRNA (miRNA)-based regulation of gene expression in PAH. However, few miRNA-related SSc-PAH were elucidated. This review firstly discusses the role of transforming growth factor-beta (TGF-β) signaling and bone morphogenetic protein receptor type II (BMPR2) in PAH and SSc. Secondly, the miRNAs relating to TGF-β and BMPR2 signaling pathways in PAH and SSc or merely PAH were subsequently summarized. Finally, future studies might develop early diagnostic biomarkers and target-oriented therapeutic strategies for SSc-PAH and PAH treatment.
Collapse
Affiliation(s)
- Bei Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Guanhua Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Ye Yu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, People's Republic of China, 310003.
| |
Collapse
|
6
|
Deng YQ, Li S, Liang ZY, Li F, Wen SL, Tao ZZ. Preliminary Study of microRNAs Allele-Specific Targeting in Allergic Rhinitis Patients from Central China. Comb Chem High Throughput Screen 2021; 25:1345-1354. [PMID: 34082667 DOI: 10.2174/1386207324666210603112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Abnormal expression of miRNA is a common feature in many diseases. Some studies have also emphasized that miRNAs play an important role in asthma and allergic rhinitis (AR). This study attempts to reveal the differences between miRNAs expression and normal nasal mucosa in AR patients by microarray method, so as to further understand the molecular mechanism of AR development. METHOD MiRNA microrrays were used for analyzing six samples of the nasal mucosa of AR and six samples of nonallergic patients. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) of some differentially expressed miRNAs was used to confirm the array results. Furthermore, pathway analysis was carried out. RESULTS The microarray identified that 64 miRNAs exhibited altered expression in the nasal mucosa of the AR group when compared with the control group. Moreover, the expression levels of ten miRNAs were significantly altered in the AR group. To verify the results of the microarray, three differentially expressed miRNA were determined by RT-PCR, and the results also confirmed these changes. Ten differentially expressed miRNAs were present in the nasal mucosa of AR patients compared with the control group, and three differentially expressed miRNAs, as miR-1244, miR-4651 and miR-7641, were determined by RT-PCR, indicating that they play important roles in the process of AR. CONCLUSION miR-1244, miR-4651 and miR-7641 may play important roles in the process of AR. Sequencing analysis indicated that three kinds of mutations exist in MAPK8 3'UTR, which may play a role in binding with miR-7641, and then influence the AR process. Single miRNA or, more probably, their sets hold the promise for their use as biomarkers of allergic rhinitis. They may also be promising targets in future therapies.
Collapse
Affiliation(s)
- Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| | - Song Li
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| | - Zheng-Yan Liang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| | - Si-Lu Wen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, China
| |
Collapse
|
7
|
Lei J, Chen P, Zhang F, Zhang N, Zhu J, Wang X, Jiang T. M2 macrophages-derived exosomal microRNA-501-3p promotes the progression of lung cancer via targeting WD repeat domain 82. Cancer Cell Int 2021; 21:91. [PMID: 33546686 PMCID: PMC7866732 DOI: 10.1186/s12935-021-01783-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Exosomes are known to transmit microRNAs (miRNAs) to affect cancer progression, while the role of M2 macrophages-derived exosomes (M2 exosomes) conveying miR-501-3p in lung cancer (LC) remains unknown. We aim to explore the role of exosomal miR-501-3p in LC development via targeting WD repeat domain 82 (WDR82). Methods Lung cancer tissue and normal tissue specimens were collected, in which tumor-associated macrophages (TAM) were measured by immunohistochemistry. M2 macrophages were induced and treated with altered miR-501-3p, and then the exosomes were extracted and identified. MiR-501-3p and WDR82 expression in LC tissues and cell liens was determined. The predictive role of miR-501-3p in prognosis of LC patients was assessed, and the proliferation, colony formation ability, invasion, migration and apoptosis of the LC cells were determined. Targeting relationship between miR-501-3p and WDR82 was confirmed. Results TAM level was elevated in lung cancer tissues. MiR-501-3p was upregulated while WDR82 was downregulated in LC tissues and cell lines, and the M2 exosomes further upregulated miR-501-3p. M2 exosomes and exosomal miR-501-3p promoted LC cell growth. MiR-501-3p inhibition reversed the effect of M2 exosomes on LC cells. WDR82 was confirmed as a target gene of miR-501-3p. Conclusion M2 macrophages-derived exosomal miR-501-3p promotes the progression of LC via downregulating WDR82.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Peng Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Feng Zhang
- Department of Oncology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shanxi, China
| | - Na Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China.
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shanxi, China.
| |
Collapse
|
8
|
Carregal-Romero S, Fadón L, Berra E, Ruíz-Cabello J. MicroRNA Nanotherapeutics for Lung Targeting. Insights into Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21093253. [PMID: 32375361 PMCID: PMC7246754 DOI: 10.3390/ijms21093253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, the potential future role of microRNA-based therapies and their specific application in lung diseases is reported with special attention to pulmonary hypertension. Current limitations of these therapies will be pointed out in order to address the challenges that they need to face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies in nanovectors has shown improvements as compared to chemically modified microRNAs toward enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will contextualize in this review the recent achievements and expectations reported for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Lucía Fadón
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
| | - Edurne Berra
- Center for Cooperative Research in Bioscience (CIC bioGUNE), Buiding 800, Science and Technology Park of Bizkaia, 48160 Derio, Spain;
| | - Jesús Ruíz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 San Sebastián, Spain; (S.C.-R.); (L.F.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
miR-140 Attenuates the Progression of Early-Stage Osteoarthritis by Retarding Chondrocyte Senescence. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:15-30. [PMID: 31790972 PMCID: PMC6909049 DOI: 10.1016/j.omtn.2019.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) is a major cause of joint pain and disability, and chondrocyte senescence is a key pathological process in OA and may be a target of new therapeutics. MicroRNA-140 (miR-140) plays a protective role in OA, but little is known about its epigenetic effect on chondrocyte senescence. In this study, we first validated the features of chondrocyte senescence characterized by increased cell cycle arrest in the G0/G1 phase and the expression of senescence-associated β-galactosidase (SA-βGal), p16INK4a, p21, p53, and γH2AX in human knee OA. Then, we revealed in interleukin 1β (IL-1β)-induced OA chondrocytes in vitro that pretransfection with miR-140 effectively inhibited the expression of SA-βGal, p16INK4a, p21, p53, and γH2AX. Furthermore, in vivo results from trauma-induced early-stage OA rats showed that intra-articularly injected miR-140 could rapidly reach the chondrocyte cytoplasm and induce molecular changes similar to the in vitro results, resulting in a noticeable alleviation of OA progression. Finally, bioinformatics analysis predicted the potential targets of miR-140 and a mechanistic network by which miR-140 regulates chondrocyte senescence. Collectively, miR-140 can effectively attenuate the progression of early-stage OA by retarding chondrocyte senescence, contributing new evidence of the involvement of miR-mediated epigenetic regulation of chondrocyte senescence in OA pathogenesis.
Collapse
|
10
|
Si H, Liang M, Cheng J, Shen B. [Effects of cartilage progenitor cells and microRNA-140 on repair of osteoarthritic cartilage injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:650-658. [PMID: 31090363 PMCID: PMC8337193 DOI: 10.7507/1002-1892.201806060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/12/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. METHODS The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. RESULTS CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. CONCLUSION miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.
Collapse
Affiliation(s)
- Haibo Si
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Mingwei Liang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jingqiu Cheng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bin Shen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
11
|
Zhang Z, Trautz B, Kračun D, Vogel F, Weitnauer M, Hochkogler K, Petry A, Görlach A. Stabilization of p22phox by Hypoxia Promotes Pulmonary Hypertension. Antioxid Redox Signal 2019; 30:56-73. [PMID: 30044141 DOI: 10.1089/ars.2017.7482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Hypoxia and reactive oxygen species (ROS) have been shown to play a role in the pathogenesis of pulmonary hypertension (PH), a potentially fatal disorder characterized by pulmonary vascular remodeling, elevated pulmonary arterial pressure, and right ventricular hypertrophy. However, how they are linked in the context of PH is not completely understood. We, therefore, investigated the role of the NADPH oxidase subunit p22phox in the response to hypoxia both in vitro and in vivo. RESULTS We found that hypoxia decreased ubiquitinylation and proteasomal degradation of p22phox dependent on prolyl hydroxylases (PHDs) and the E3 ubiquitin ligase protein von Hippel Lindau (pVHL), which resulted in p22phox stabilization and accumulation. p22phox promoted vascular proliferation, migration, and angiogenesis under normoxia and hypoxia. Increased levels of p22phox were also detected in lungs and hearts from mice with hypoxia-induced PH. Mice harboring a point mutation (Y121H) in the p22phox gene, which resulted in decreased p22phox stability and subsequent loss of this protein, were protected against hypoxia-induced PH. Mechanistically, p22phox contributed to ROS generation under normoxia, hypoxia, and hypoxia/reoxygenation. p22phox increased the levels and activity of HIF1α, the major cellular regulator of hypoxia adaptation, under normoxia and hypoxia, possibly by decreasing the levels of the PHD cofactors ascorbate and iron(II), and it contributed to the downregulation of the tumor suppressor miR-140 by hypoxia. INNOVATION These data identify p22phox as an important regulator of the hypoxia response both in vitro and in vivo. CONCLUSION p22phox-dependent NADPH oxidases contribute to the pathophysiology of PH induced by hypoxia.
Collapse
Affiliation(s)
- Zuwen Zhang
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Benjamin Trautz
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Damir Kračun
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Frederick Vogel
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Michael Weitnauer
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Katharina Hochkogler
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany .,2 DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance , Munich, Germany
| | - Andreas Petry
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Agnes Görlach
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany .,2 DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance , Munich, Germany
| |
Collapse
|
12
|
Gan BL, Zhang LJ, Gao L, Ma FC, He RQ, Chen G, Ma J, Zhong JC, Hu XH. Downregulation of miR‑224‑5p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses. Oncol Rep 2018; 40:3171-3188. [PMID: 30542718 PMCID: PMC6196605 DOI: 10.3892/or.2018.6766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
The function of the expression of microRNA (miR)-224-5p in prostate adenocarcinoma (PCa) remains to be elucidated, therefore, the present study aimed to investigate the clinical significance and potential molecular mechanism of miR-224-5p in PCa. Data on the expression of miR-224-5p in PCa were extracted from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), ArrayExpress and previous literature, and meta-analyses with standardized mean difference (SMD) and summary receiver operating characteristic (sROC) methods were performed for statistical analyses. The prospective target genes of miR-224-5p were collected by overlapping the differentially expressed mRNAs in TCGA and GEO, and target genes predicted by miRWalk2.0. Subsequently, in silico analysis was performed to examine the associated pathways of miR-224-5p in PCa. The expression of miR-224-5p was markedly lower in PCa; the overall SMD was −0.562, and overall sROC area under the curve was 0.80. In addition, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the prospective target genes of miR-224-5p were largely enriched in the amino sugar and nucleotide sugar metabolism signaling pathway, and three genes [UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), hexokinase 2 (HK2) and chitinase 1 (CHIT1)] enriched in this pathway showed higher expression (P<0.05). In addition, key genes in the protein-protein interaction network analysis [DNA topoisomerase 2-α (TOP2A), ATP citrate lyase (ACLY) and ribonucleotide reductase regulatory subunit M2 (RRM2)] exhibited significantly increased expression (P<0.05). The results suggested that the downregulated expression of miR-224-5p may be associated with the clinical progression and prognosis of PCa. Furthermore, miR-224-5p likely exerts its effects by targeting genes, including UAP1, HK2, CHIT1, TOP2A, ACLY and RRM2. However, in vivo and in vitro experiments are required to confirm these findings.
Collapse
Affiliation(s)
- Bin-Liang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
13
|
Nunes KP, de Oliveira AA, Mowry FE, Biancardi VC. Targeting toll-like receptor 4 signalling pathways: can therapeutics pay the toll for hypertension? Br J Pharmacol 2018; 176:1864-1879. [PMID: 29981161 DOI: 10.1111/bph.14438] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/09/2018] [Accepted: 06/24/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a prominent role in the initiation and maintenance of hypertension. The innate immune system, via toll-like receptors (TLRs), identifies distinct signatures of invading microbes and damage-associated molecular patterns and triggers a chain of downstream signalling cascades, leading to secretion of pro-inflammatory cytokines and shaping the adaptive immune response. Over the past decade, a dysfunctional TLR-mediated response, particularly via TLR4, has been suggested to support a chronic inflammatory state in hypertension, inducing deleterious local and systemic effects in host cells and tissues and contributing to disease progression. While the underlying mechanisms triggering TLR4 need further research, evidence suggests that sustained elevations in BP disrupt homeostasis, releasing endogenous TLR4 ligands in hypertension. In this review, we discuss the emerging role of TLR4 in the pathogenesis of hypertension and whether targeting this receptor and its signalling pathways could offer a therapeutic strategy for management of this multifaceted disease. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | | | | | | |
Collapse
|