1
|
Zeng Q, Cao J, Xie F, Zhu L, Wu X, Hu X, Chen Z, Chen X, Li X, Chiang CM, Wu H. CRISPR-Cas9-mediated chicken prmt5 gene knockout and its critical role in interferon regulation. Poult Sci 2024; 103:103344. [PMID: 38277892 PMCID: PMC10840345 DOI: 10.1016/j.psj.2023.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/28/2024] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5), a type II arginine methyltransferase, controls arginine dimethylation of a variety of substrates. While many papers have reported the function of mammalian PRMT5, it remains unclear how PRMT5 functions in chicken cells. In this study, we found that chicken (ch) PRMT5 is widely expressed in a variety of chicken tissues and is distributed in both the cytoplasm and the nucleus. Ectopic expression of chPRMT5 significantly suppresses chIFN-β activation induced by chMDA5. In addition, a prmt5 gene-deficient DF-1 cell line was constructed using CRISPR/Cas9. In comparison with the wild-type cells, the prmt5-/- DF-1 cells displays normal morphology and maintain proliferative capacity. Luciferase reporter assay and overexpression showed that prmt5-/- DF-1 cells had increased IFN-β production. With identified chicken PRMT5 and CRISPR/Cas9 knockout performed in DF-1 cells, we uncovered a functional link of chPRMT5 in suppression of IFN-β production and interferon-stimulated gene expression.
Collapse
Affiliation(s)
- Qinghua Zeng
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, P.R. China
| | - Jingjing Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P.R. China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, P.R. China
| | - Lina Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, P.R. China
| | - Xiangdong Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, P.R. China
| | - Xifeng Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, P.R. China
| | - Zheng Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, P.R. China
| | - Xiaoqing Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, P.R. China
| | - Xiangzhi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, P.R. China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, P.R. China.
| |
Collapse
|
2
|
Wang YC, Chang CP, Lai YC, Chan CH, Ou SC, Wang SH, Li C. The conservation and diversity of the exons encoding the glycine and arginine rich domain of the fibrillarin gene in vertebrates, with special focus on reptiles and birds. Gene 2023; 866:147345. [PMID: 36893875 DOI: 10.1016/j.gene.2023.147345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2-3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80-130-nt shorter and the lengths of exon 3 in reptiles are around 50-90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chuan Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shan-Chia Ou
- Department of Veterinary Medicine, Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Repenning A, Happel D, Bouchard C, Meixner M, Verel‐Yilmaz Y, Raifer H, Holembowski L, Krause E, Kremmer E, Feederle R, Keber CU, Lohoff M, Slater EP, Bartsch DK, Bauer U. PRMT1 promotes the tumor suppressor function of p14 ARF and is indicative for pancreatic cancer prognosis. EMBO J 2021; 40:e106777. [PMID: 33999432 PMCID: PMC8246066 DOI: 10.15252/embj.2020106777] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
The p14ARF protein is a well-known regulator of p53-dependent and p53-independent tumor-suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo- and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C-terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF . In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF . Genotoxic stress causes augmented interaction between PRMT1 and p14ARF , accompanied by arginine methylation of p14ARF . PRMT1-dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53-independent apoptosis. This PRMT1-p14ARF cooperation is cancer-relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1-mediated arginine methylation is an important trigger for p14ARF 's stress-induced tumor-suppressive function.
Collapse
Affiliation(s)
- Antje Repenning
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Daniela Happel
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | - Yesim Verel‐Yilmaz
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Hartmann Raifer
- Core Facility Flow CytometryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
- Institute for Med. Microbiology & Hospital HygieneUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Lena Holembowski
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| | | | - Elisabeth Kremmer
- Institute of Molecular ImmunologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Regina Feederle
- Monoclonal Antibody Core FacilityInstitute for Diabetes and ObesityHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Corinna U Keber
- Institute for PathologyUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Michael Lohoff
- Institute for Med. Microbiology & Hospital HygieneUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Emily P Slater
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Detlef K Bartsch
- Department of VisceralThoracic and Vascular SurgeryUniversity Hospital MarburgPhilipps‐University MarburgMarburgGermany
| | - Uta‐Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT)Philipps‐University MarburgMarburgGermany
| |
Collapse
|
4
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|