1
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin-Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
Affiliation(s)
- Fatemeh Seifar
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Edward J Fox
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Yue Liu
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric B Dammer
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Erica Modeste
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Duc M Duong
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luming Yin
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Qi Guo
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kaiming Xu
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lingyan Ping
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joseph S Reddy
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Zachary Quicksall
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | - Jo Scanlan
- Sage Bionetworks, Seattle, Washington, USA
| | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Xianfeng Chen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Saurabh Baheti
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Charlotte Ho
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Geovanna Yepez
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Adriana O Mitchell
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Stephanie R Oatman
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Xue Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | | | - Thomas Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd E Golde
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan Prokop
- University of Florida, Gainesville, 100 Academic Advising Center, Gainesville, Florida, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Varham Haroutunian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marla Gearing
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - James J Lah
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Philip De Jager
- Columbia University Irving Medical Center, New York, New York, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Allan I Levey
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aliza Wingo
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Wingo
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
4
|
Murata T, Yamaguchi M, Kohno S, Takahashi C, Risa W, Hatori K, Hikita K, Kaneda N. Regucalcin enhances adipocyte differentiation and attenuates inflammation in 3T3-L1 cells. FEBS Open Bio 2020; 10:1967-1984. [PMID: 32783343 PMCID: PMC7530391 DOI: 10.1002/2211-5463.12947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Dysregulation of adipocyte differentiation and dysfunction play key roles in the pathogenesis of obesity and associated disorders such as diabetes and metabolic syndrome, and as such, a better understanding of the molecular mechanism of adipogenesis may help to elucidate the pathological condition of obesity and its associated disorders. Regucalcin (RGN) plays multiple regulatory roles in intracellular Ca2+ signaling pathways in mammalian cells. Here, we report that overexpression of RGN enhances lipid accumulation in 3T3‐L1 adipocyte cells after adipogenic stimulation, accompanied by upregulation of adipocyte differentiation marker proteins. In contrast, genetic disruption of RGN inhibited adipogenic stimulation‐induced differentiation of 3T3‐L1 cells. Furthermore, RGN overexpression in differentiated 3T3‐L1 adipocytes blocked inflammatory crosstalk between 3T3‐L1 adipocytes and RAW264.7 macrophages in a transwell coculture system. Knockdown of RGN expression in cocultured 3T3‐L1 adipocytes enhanced their susceptibility to RAW264.7 macrophage‐mediated inflammation. These results suggest that RGN is required for 3T3‐L1 adipocyte differentiation and that it exerts anti‐inflammatory activity against 3T3‐L1 adipocyte inflammation after coculture with RAW264.7 macrophages. Thus, RGN may be a novel regulator of adipocyte differentiation and act as a suppressor of inflammation in macrophage‐infiltrated adipocyte tissue.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Watanabe Risa
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kanna Hatori
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kiyomi Hikita
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Norio Kaneda
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
5
|
Murata T, Kohno S, Ogawa K, Ito C, Itoigawa M, Ito M, Hikita K, Kaneda N. Cytotoxic activity of dimeric acridone alkaloids derived from Citrus plants towards human leukaemia HL-60 cells. J Pharm Pharmacol 2020; 72:1445-1457. [PMID: 32715490 DOI: 10.1111/jphp.13327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Acridone alkaloids from Citrus and their derivatives show various kinds of biological activity. However, the anticancer activities of dimeric acridone alkaloids with unique structures and the molecular mechanism of these effects are poorly understood. METHODS We investigated the cytotoxicity effects of dimeric acridone alkaloids isolated from Marsh grapefruit on human myeloid leukaemia HL-60 cells. KEY FINDINGS Of the six dimeric acridone alkaloids tested, citbismine-E, the most potent, dose- and time-dependently decreased HL-60 cell viability by inducing apoptosis. The treatment of HL-60 cells with citbismine-E yielded a significant increase in levels of intracellular reactive oxygen species (ROS). Citbismine-E lowered the mitochondrial membrane potential and increased the activities of caspase-9 and -3. In addition, citbismine-E-induced apoptosis, decrease in mitochondrial membrane potential and caspase activation were significantly alleviated by pretreatment of the cells with antioxidant N-acetylcysteine (NAC). Citbismine-E induced intrinsic caspase-dependent apoptosis through ROS-mediated c-Jun N-terminal kinase activation. Citbismine-E-induced production of oxidative stress biomarkers, malondialdehyde and 8-hydroxy-2'-deoxyguanosine was also attenuated by pretreatment with NAC. CONCLUSIONS Citbismine-E is a powerful cytotoxic agent against HL-60 cells that acts by inducing mitochondrial dysfunction-mediated apoptosis through ROS-dependent JNK activation. Citbismine-E also induced oxidative stress damage via ROS-mediated lipid peroxidation and DNA damage in HL-60 cells.
Collapse
Affiliation(s)
- Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuma Ogawa
- Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | - Chihiro Ito
- Laboratory of Natural Products Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masataka Itoigawa
- School of Sport and Health Science, Tokai Gakuen University, Miyoshi, Japan
| | - Masafumi Ito
- Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | - Kiyomi Hikita
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Norio Kaneda
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|