1
|
Dayer D, Bayati V, Ebrahimi M. Manipulation of Sonic Hedgehog Signaling Pathway in Maintenance, Differentiation, and Endocrine Activity of Insulin-Producing Cells: A Systematic Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:65-76. [PMID: 38356490 PMCID: PMC10862108 DOI: 10.30476/ijms.2023.95425.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 02/16/2024]
Abstract
Background Some studies have evaluated the manipulation of the sonic hedgehog (Shh) signaling pathway to generate more efficient insulin-producing cells (IPCs). In a systematic review, we evaluated in vitro and in vivo studies on the effect of inhibition or activation of the Shh pathway on the production, differentiation, maintenance, and endocrine activity of IPCs. Methods A systematic review was conducted using all available experimental studies published between January 2000 and November 2022. The review aimed at determining the effect of Shh manipulation on the differentiation of stem cells (SCs) into IPCs. Keywords and phrases using medical subject headings were extracted, and a complete search was performed in Web of Science, Embase, ProQuest, PubMed, Scopus, and Cochrane Library databases. The inclusion criteria were manipulation of Shh in SCs, SCs differentiation into IPCs, and endocrine activity of mature IPCs. Articles with incomplete data and duplications were excluded. Results A total of 208 articles were initially identified, out of which 11 articles were included in the study. The effect of Shh inhibition in the definitive endoderm stage to produce functional IPCs were confirmed. Some studies showed the importance of Shh re-activation at late-stage differentiation for the generation of efficient IPCs. It is proposed that baseline concentrations of Shh in mature pancreatic β-cells affect insulin secretion and endocrine activities of the cells. However, Shh overexpression in pancreatic β-cells ultimately leads to improper endocrine function and inadequate glucose-sensing insulin secretion. Conclusion Accurate manipulation of the Shh signaling pathway can be an effective approach in the production and maintenance of functional IPCs.
Collapse
Affiliation(s)
- Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ebrahimi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Wu M, Mi J, Qu GX, Zhang S, Jian Y, Gao C, Cai Q, Liu J, Jiang J, Huang H. Role of Hedgehog Signaling Pathways in Multipotent Mesenchymal Stem Cells Differentiation. Cell Transplant 2024; 33:9636897241244943. [PMID: 38695366 PMCID: PMC11067683 DOI: 10.1177/09636897241244943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Junwei Mi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Guo-xin Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shu Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yi Jian
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qingli Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jing Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Chatterjee R, Shukla A, Chakrabarti K, Chatterji U. CLEC12A sensitizes differentially responsive breast cancer cells to the anti-cancer effects of artemisinin by repressing autophagy and inflammation. Front Oncol 2023; 13:1242432. [PMID: 38144525 PMCID: PMC10748408 DOI: 10.3389/fonc.2023.1242432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Enhanced inflammatory responses promote tumor progression by activating toll-like receptors (TLRs), which in turn are inhibited by C-type lectin like receptors (CTLRs), like CLEC12A. Although the presence of CLEC12A in acute myeloid leukemia is well established, its role in non-hematopoietic tumors is still obscure. In hematopoietic tumors, CLEC12A mostly inhibits TLRs and modulates inflammatory responses via NF-κB signaling. In this study, the fate of tumor progression was determined by modulating CLEC12A using artemisinin (ART), a FDA-approved anti-malarial drug, known for its anti-cancer and immunomodulatory properties with minimal adverse effects on normal cells. Method Effects of ART were primarily determined on hematological factors and primary metastatic organs, such as lungs, kidney and liver in normal and tumor-bearing BALB/c mice. Tumor-bearing mice were treated with different concentrations of ART and expressions of CLEC12A and associated downstream components were determined. CLEC12A was overexpressed in MDA-MB-231 and 4T1 cells, and the effects of ART were analyzed in the overexpressed cells. Silencing TLR4 using vivo morpholino was performed to elucidate its role in tumor progression in response to ART. Finally, CLEC12A modulation by ART was evaluated in the resident cancer stem cell (CSC) population. Results ART did not alter physiology of normal mice, in contrast to tumor-bearing mice, where ART led to tumor regression. In addition, ART reduced expression of CLEC12A. Expectedly, TLR4 expression increased, but surprisingly, that of NF-κB (RelA) and JNK/pJNK decreased, along with reduced inflammation, reduced autophagy and increased apoptosis. All the above observations reverted on overexpression of CLEC12A in MDA-MB-231 and 4T1 cells. Inhibition of TLR4, however, indicated no change in the expressions of CLEC12A, NF-κB, or apoptotic markers. The effect of ART showed a similar trend in the CSC population as in cancer cells. Conclusion This study, for the first time, confirmed a differential role of CLEC12A in non-hematopoietic tumor and cancer stem cells in response to ART. Subsequent interaction and modulation of CLEC12A with ART induced tumor cell death and abrogation of CSCs, confirming a more comprehensive tumor therapy with reduced risk of recurrence. Therefore, ART may be repurposed as an effective drug for cancer treatment in future.
Collapse
Affiliation(s)
- Ranodeep Chatterjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Aditya Shukla
- Cell Biology Laboratory, Department of Microbiology, University of Calcutta, Kolkata, India
| | | | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
4
|
Tabandeh MR, Soroush F, Dayer D. Itaconic Acid as A Differential Transcription Regulator of Apoptosis and Autophagy Pathways Genes: A Rat Adipose Mesenchymal Stem Cells Model. CELL JOURNAL 2022; 24:586-595. [PMID: 36259476 PMCID: PMC9617019 DOI: 10.22074/cellj.2022.8320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Itaconate, a novel regulatory immunometabolite, is synthesized by inflammatory macrophage. It acts as an anti-inflammatory mediator and regulates several metabolic and signaling pathways particularly Nrf2 pathway. The immunometabolites can affect the stemness potency, differentiation ability and viability of stem cells, but little is known about the critical function of Itaconate on the stem cell fate. The objective of the present study was to determine the regulatory effects of Itaconic acid on the cell viability and transcription of apoptosis and autophagy pathways genes in the rat adipose derived mesenchymal stem cells (ADMSCs). MATERIALS AND METHODS In this experimental study, the ADMSCs were incubated with 125 μM and 250 μM dimethyl itaconate (DMI) for 24 hours or 48 hours. The expression of apoptosis pathway genes (Bax, Bcl2, Caspase 3, Fas, Fadd and Caspase 8) and autophagy pathway genes (Atg12, Atg5, Beclin, Lc3b and P62) were determined using real time polymerase chain reaction (PCR) assay. Using the ELISA method, cellular level of phospho-NRF2 protein was measured. RESULTS The results indicated that DMI increased the expression of NRF2 protein, altered the expression of some apoptosis genes (Fadd, Bax and Bcl2), and changed the expression of some autophagy related genes (Lc3b, Becline and P62) in ADMSCs. DMI had no obvious effect on the transcription of caspases enzymes. CONCLUSION Because autophagy activation and apoptosis suppression can protect stem cells against environmental stress, it seems Itaconate can affect the functions and viability of ADMSCs via converse regulation of these pathways.
Collapse
Affiliation(s)
- Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran
University of Ahvaz, Ahvaz, Iran,P.O.Box: 61355-145Department of Basic SciencesDivision of Biochemistry and Molecular BiologyFaculty of
Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Fatemeh Soroush
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran
University of Ahvaz, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences,
Ahvaz, Iran
| |
Collapse
|
5
|
Ahmed HH, Aglan HA, Beherei HH, Mabrouk M, Mahmoud NS. The promising role of hypoxia-resistant insulin-producing cells in ameliorating diabetes mellitus in vivo. Future Sci OA 2022; 8:FSO811. [PMID: 36248064 PMCID: PMC9540411 DOI: 10.2144/fsoa-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against diabetes in vivo. Materials & methods: Mesenchymal stem cells (MSCs) differentiation into IPCs in the presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential. Results: MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue architecture. Conclusion: The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs that could be an inspirational strategy for curing diabetes. Transplantation of cells that can release insulin have been reported as an alternate method to islet transfer for curing diabetes; however, the main difficulty facing the quality of the pancreatic cells is the deficiency of oxygen. Thus, this study was done to discover a new curing method for diabetes by producing cells that can release insulin and could survive under low oxygen circumstances, and assessing their healing ability against diabetes in rats.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
6
|
Hashemitabar M, Heidari E. Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation. J Cell Physiol 2018; 234:7811-7827. [PMID: 30480819 DOI: 10.1002/jcp.27736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are destroyed by the immune system, in type 1 diabetes (T1D) and are impaired by glucose insensitivity in type 2 diabetes (T2D). Islet-cells transplantation is a promising therapeutic approach based on in vitro differentiation of pluripotent stem cells (PSCs) to insulin-producing cells (IPCs). According to evolutionary stages in β-cell development, there are several distinct checkpoints; each one has a unique characteristic, including definitive endoderm (DE), primitive gut (PG), posterior foregut (PF), pancreatic epithelium (PE), endocrine precursor (EP), and immature β-cells up to functional β-cells. A better understanding of the gene regulatory networks (GRN) and associated transcription factors in each specific developmental stage, guarantees the achievement of the next successful checkpoints and ensures an efficient β-cell differentiation procedure. The new findings in signaling pathways, related to the development of the pancreas are discussed here, including Wnt, Activin/Nodal, FGF, BMP, retinoic acid (RA), sonic hedgehog (Shh), Notch, and downstream regulators, required for β-cell commitment. We also summarized different approaches in the IPCs protocol to conceptually define a standardized system, leading to the creation of a reproducible method for β-cell differentiation. To normalize blood glucose level in diabetic mice, the replacement therapy in the early differentiation stage, such as EP stages was associated with better outcome when compared with the fully differentiated β-cells' graft.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Heidari
- Department of Anatomy and Embryology, Faculty of Medicine, Joundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|