1
|
Bouin A, Zhang C, Lindley ND, Truan G, Lautier T. Exploring linker's sequence diversity to fuse carotene cyclase and hydroxylase for zeaxanthin biosynthesis. Metab Eng Commun 2023; 16:e00222. [PMID: 37168436 PMCID: PMC10165439 DOI: 10.1016/j.mec.2023.e00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023] Open
Abstract
Fusion of catalytic domains can accelerate cascade reactions by bringing enzymes in close proximity. However, the design of a protein fusion and the choice of a linker are often challenging and lack of guidance. To determine the impact of linker parameters on fusion proteins, a library of linkers featuring various lengths, secondary structures, extensions and hydrophobicities was designed. Linkers were used to fuse the lycopene cyclase (crtY) and β-carotene hydroxylase (crtZ) from Pantoea ananatis to create fusion proteins to produce zeaxanthin. The fusion efficiency was assessed by comparing the carotenoids content in a carotenoid-producer Escherichia coli strain. It was shown that in addition to the orientation of the enzymes and the size of the linker, the first amino acid of the linker is also a key factor in determining the efficiency of a protein fusion. The wide range of sequence diversity in our linker library enables the fine tuning of protein fusion and this approach can be easily transferred to other enzyme couples.
Collapse
Affiliation(s)
- Aurélie Bouin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Nic D. Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, 138602, Singapore
| |
Collapse
|
2
|
Deane DT, Cope TA, Schulz AM, Bennett ET, Hughes RM. Design, Heterologous Expression, and Application of an Immobilized Protein Kinase. Bioconjug Chem 2023; 34:204-211. [PMID: 36379001 DOI: 10.1021/acs.bioconjchem.2c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase A (PKA) is a biologically important enzyme for cell regulation, often referred to as the "central kinase". An immobilized PKA that retains substrate specificity and activity would be a useful tool for laboratory scientists, enabling targeted phosphorylation without interference from downstream kinase contamination or kinase autophosphorylation in sensitive assays. Moreover, it might also provide the benefits of robustness and reusability that are often associated with immobilized enzyme preparations. In this work, we describe the creation of a recombinant PKA fusion protein that incorporates the HaloTag covalent immobilization system. We demonstrate that protein fusion design, including affinity tag placement, is critical for optimal heterologous expression in Escherichia coli. Furthermore, we demonstrate various applications of our immobilized PKA, including the phosphorylation of recombinant PKA substrates, such as vasodilator-stimulated phosphoprotein, and endogenous PKA substrates in a cell lysate. This immobilized PKA also possesses robust activity and reusability over multiple trials. This work holds promise as a generalizable strategy for the production and application of immobilized protein kinases.
Collapse
Affiliation(s)
- Dalton T Deane
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Thomas A Cope
- University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Anna M Schulz
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Edward T Bennett
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
3
|
Ma Y, Zhang N, Vernet G, Kara S. Design of fusion enzymes for biocatalytic applications in aqueous and non-aqueous media. Front Bioeng Biotechnol 2022; 10:944226. [PMID: 35935496 PMCID: PMC9354712 DOI: 10.3389/fbioe.2022.944226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Biocatalytic cascades play a fundamental role in sustainable chemical synthesis. Fusion enzymes are one of the powerful toolboxes to enable the tailored combination of multiple enzymes for efficient cooperative cascades. Especially, this approach offers a substantial potential for the practical application of cofactor-dependent oxidoreductases by forming cofactor self-sufficient cascades. Adequate cofactor recycling while keeping the oxidized/reduced cofactor in a confined microenvironment benefits from the fusion fashion and makes the use of oxidoreductases in harsh non-aqueous media practical. In this mini-review, we have summarized the application of various fusion enzymes in aqueous and non-aqueous media with a focus on the discussion of linker design within oxidoreductases. The design and properties of the reported linkers have been reviewed in detail. Besides, the substrate loadings in these studies have been listed to showcase one of the key limitations (low solubility of hydrophobic substrates) of aqueous biocatalysis when it comes to efficiency and economic feasibility. Therefore, a straightforward strategy of applying non-aqueous media has been briefly discussed while the potential of using the fusion oxidoreductase of interest in organic media was highlighted.
Collapse
Affiliation(s)
- Yu Ma
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Ningning Zhang
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Guillem Vernet
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Selin Kara,
| |
Collapse
|
4
|
Schmitz F, Glas J, Neutze R, Hedfalk K. A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions. Sci Rep 2021; 11:19232. [PMID: 34584201 PMCID: PMC8478939 DOI: 10.1038/s41598-021-98810-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Interactions between membrane proteins within a cellular environment are crucial for all living cells. Robust methods to screen and analyse membrane protein complexes are essential to shed light on the molecular mechanism of membrane protein interactions. Most methods for detecting protein:protein interactions (PPIs) have been developed to target the interactions of soluble proteins. Bimolecular fluorescence complementation (BiFC) assays allow the formation of complexes involving PPI partners to be visualized in vivo, irrespective of whether or not these interactions are between soluble or membrane proteins. In this study, we report the development of a screening approach which utilizes BiFC and applies flow cytometry to characterize membrane protein interaction partners in the host Saccharomyces cerevisiae. These data allow constructive complexes to be discriminated with statistical confidence from random interactions and potentially allows an efficient screen for PPIs in vivo within a high-throughput setup.
Collapse
Affiliation(s)
- Florian Schmitz
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden
| | - Jessica Glas
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
5
|
Abstract
The impacts of linkers on dynamics, expression, and activity of biomacromolecules are often overlooked. This may be due, in part, to the lack of facile methods for incorporation and analysis of linkers that vary iteratively in both length and sequence composition. The protaTETHER method addresses this gap by enabling the incorporation of focused linker libraries at potentially any region in a protein sequence. In this chapter, we describe the generation and incorporation of linkers in a PKAc-GFP fusion protein and provide methods for the application and evaluation of the protaTETHER process.
Collapse
|
6
|
Abstract
Linker engineering constitutes a critical, yet frequently underestimated aspect in the construction of synthetic protein switches and sensors. Notably, systematic strategies to engineer linkers by predictive means remain largely elusive to date. This is primarily due to our insufficient understanding how the biophysical properties that underlie linker functions mediate the conformational transitions in artificially engineered protein switches and sensors. The construction of synthetic protein switches and sensors therefore heavily relies on experimental trial-and-error. Yet, methods for effectively generating linker diversity at the genetic level are scarce. Addressing this technical shortcoming, iterative functional linker cloning (iFLinkC) enables the combinatorial assembly of linker elements with functional domains from sequence verified repositories that are developed and stored in-house. The assembly process is highly scalable and given its recursive nature generates linker diversity in a combinatorial and exponential fashion based on a limited number of linker elements.
Collapse
|
7
|
Gräwe A, Ranglack J, Weyrich A, Stein V. iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains. Nucleic Acids Res 2020; 48:e24. [PMID: 31925441 PMCID: PMC7039005 DOI: 10.1093/nar/gkz1210] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Recent years have witnessed increasing efforts to engineer artificial biological functions through recombination of modular-organized toolboxes of protein scaffolds and parts. A critical, yet frequently neglected aspect concerns the identity of peptide linkers or spacers connecting individual domains which remain poorly understood and challenging to assemble. Addressing these limitations, iFlinkC comprises a highly scalable DNA assembly process that facilitates the combinatorial recombination of functional domains with linkers of varying length and flexibility, thereby overcoming challenges with high GC-content and the repeat nature of linker elements. The capacity of iFLinkC is demonstrated in the construction of synthetic protease switches featuring PDZ-FN3-based affinity clamps and single-chain FKBP12-FRB receptors as allosteric inputs. Library screening experiments demonstrate that linker space is highly plastic as the induction of allosterically regulated protease switches can vary from >150-fold switch-ON to >13-fold switch-OFF solely depending on the identity of the connecting linkers and relative orientation of functional domains. In addition, Pro-rich linkers yield the most potent switches contradicting the conventional use of flexible Gly-Ser linkers. Given the ease and efficiency how functional domains can be readily recombined with any type of linker, iFLinkC is anticipated to be widely applicable to the assembly of any type of fusion protein.
Collapse
Affiliation(s)
- Alexander Gräwe
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Jan Ranglack
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Anastasia Weyrich
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Viktor Stein
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
8
|
Abstract
One approach to bringing enzymes together for multienzyme biocatalysis is genetic fusion. This enables the production of multifunctional enzymes that can be used for whole-cell biotransformations or for in vitro (cascade) reactions. In some cases and in some aspects, such as expression and conversions, the fused enzymes outperform a combination of the individual enzymes. In contrast, some enzyme fusions are greatly compromised in activity and/or expression. In this Minireview, we give an overview of studies on fusions between two or more enzymes that were used for biocatalytic applications, with a focus on oxidative enzymes. Typically, the enzymes are paired to facilitate cofactor recycling or cosubstrate supply. In addition, different linker designs are briefly discussed. Although enzyme fusion is a promising tool for some biocatalytic applications, future studies could benefit from integrating the findings of previous studies in order to improve reliability and effectiveness.
Collapse
Affiliation(s)
- Friso S. Aalbers
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|