1
|
Kovina AP, Luzhin AV, Tatarskiy VV, Deriglazov DA, Petrova NV, Petrova NV, Kondratyeva LG, Kantidze OL, Razin SV, Velichko AK. Disruption of RNA Splicing Increases Vulnerability of Cells to DNA-PK Inhibitors. Int J Mol Sci 2024; 25:11810. [PMID: 39519361 PMCID: PMC11546466 DOI: 10.3390/ijms252111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a key effector of non-homologous end joining (NHEJ)-mediated double-strand break (DSB) repair. Since its identification, a substantial body of evidence has demonstrated that DNA-PK is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis in cancer patients. Recent studies have also uncovered novel functions of DNA-PK, shifting the paradigm of the role of DNA-PK in oncogenesis and renewing interest in targeting DNA-PK for cancer therapy. To gain genetic insight into the cellular pathways requiring DNA-PK activity, we used a CRISPR/Cas9 screen to identify genes in which defects cause hypersensitivity to DNA-PK inhibitors. We identified over one hundred genes involved in DNA replication, cell cycle regulation, and RNA processing that promoted cell survival when DNA-PK kinase activity was suppressed. This gene set will be useful for characterizing novel biological processes that require DNA-PK activity and identifying predictive biomarkers of response to DNA-PK inhibition in the clinic. We also validated several genes from this set and reported previously undescribed genes that modulate the response to DNA-PK inhibitors. In particular, we found that compromising the mRNA splicing pathway led to marked hypersensitivity to DNA-PK inhibition, providing a possible rationale for the combined use of splicing inhibitors and DNA-PK inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Anastasia P. Kovina
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
| | - Artem V. Luzhin
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| | - Victor V. Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
- Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Dmitry A. Deriglazov
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
| | - Natalia V. Petrova
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
| | - Nadezhda V. Petrova
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
| | - Liya G. Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
| | - Omar L. Kantidze
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
| | - Sergey V. Razin
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
- Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Artem K. Velichko
- Department of Cellular Genomics, Institute of Gene Biology RAS, 119334 Moscow, Russia; (A.P.K.); (A.V.L.); (D.A.D.); (N.V.P.); (N.V.P.); (O.L.K.); (S.V.R.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Patricio DDO, Dias GBM, Granella LW, Trigg B, Teague HC, Bittencourt D, Báfica A, Zanotto-Filho A, Ferguson B, Mansur DS. DNA-PKcs restricts Zika virus spreading and is required for effective antiviral response. Front Immunol 2022; 13:1042463. [PMID: 36311766 PMCID: PMC9606669 DOI: 10.3389/fimmu.2022.1042463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 04/23/2024] Open
Abstract
Zika virus (ZIKV) is a single-strand RNA mosquito-borne flavivirus with significant public health impact. ZIKV infection induces double-strand DNA breaks (DSBs) in human neural progenitor cells that may contribute to severe neuronal manifestations in newborns. The DNA-PK complex plays a critical role in repairing DSBs and in the innate immune response to infection. It is unknown, however, whether DNA-PK regulates ZIKV infection. Here we investigated the role of DNA-PKcs, the catalytic subunit of DNA-PK, during ZIKV infection. We demonstrate that DNA-PKcs restricts the spread of ZIKV infection in human epithelial cells. Increased ZIKV replication and spread in DNA-PKcs deficient cells is related to a notable decrease in transcription of type I and III interferons as well as IFIT1, IFIT2, and IL6. This was shown to be independent of IRF1, IRF3, or p65, canonical transcription factors necessary for activation of both type I and III interferon promoters. The mechanism of DNA-PKcs to restrict ZIKV infection is independent of DSB. Thus, these data suggest a non-canonical role for DNA-PK during Zika virus infection, acting downstream of IFNs transcription factors for an efficient antiviral immune response.
Collapse
Affiliation(s)
- Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Brisa Malaquias Dias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucilene Wildner Granella
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ben Trigg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dina Bittencourt
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alfeu Zanotto-Filho
- Laboratório de Farmacologia e Bioquímica do Câncer, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Brian Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
DNA Damage Regulates the Functions of the RNA Binding Protein Sam68 through ATM-Dependent Phosphorylation. Cancers (Basel) 2022; 14:cancers14163847. [PMID: 36010841 PMCID: PMC9405969 DOI: 10.3390/cancers14163847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Alterations of the complex network of interactions between the DNA damage response pathway and RNA metabolism have been described in several tumors, and increasing efforts are devoted to the elucidation of the molecular mechanisms involved in this network. Previous large-scale proteomic studies identified the RNA binding protein Sam68 as a putative target of the ATM kinase. Herein, we demonstrate that ATM phosphorylates Sam68 upon DNA damage induction, and this post-translational modification regulates both the signaling function of Sam68 in the initial phase of the DNA damage response and its RNA processing activity. Thus, our study uncovers anew crosstalk between ATM and Sam68, which may represent a paradigm for the functional interaction between the DDR pathway and RNA binding proteins, and a possible actionabletarget in human cancers. Abstract Cancer cells frequently exhibit dysregulation of the DNA damage response (DDR), genomic instability, and altered RNA metabolism. Recent genome-wide studies have strongly suggested an interaction between the pathways involved in the cellular response to DDR and in the regulation of RNA metabolism, but the molecular mechanism(s) involved in this crosstalk are largely unknown. Herein, we found that activation of the DDR kinase ATM promotes its interaction with Sam68, leading to phosphorylation of this multifunctional RNA binding protein (RBP) on three residues: threonine 61, serine 388 and serine 390. Moreover, we demonstrate that ATM-dependent phosphorylation of threonine 61 promotes the function of Sam68 in the DDR pathway and enhances its RNA processing activity. Importantly, ATM-mediated phosphorylation of Sam68 in prostate cancer cells modulates alternative polyadenylation of transcripts that are targets of Sam68, supporting the notion that the ATM–Sam68 axis exerts a multifaceted role in the response to DNA damage. Thus, our work validates Sam68 as an ATM kinase substrate and uncovers an unexpected bidirectional interplay between ATM and Sam68, which couples the DDR pathway to modulation of RNA metabolism in response to genotoxic stress.
Collapse
|
4
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, Ferezin CDC, Silva FR, Rodrigues de Oliveira AL, Alves dos Reis Moura L, Martins MB, Simabuco FM, Kobarg J. On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response. Cells 2021; 10:507. [PMID: 33673578 PMCID: PMC7997185 DOI: 10.3390/cells10030507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.
Collapse
Affiliation(s)
- Isadora Carolina Betim Pavan
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Andressa Peres de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Pedro Rafael Firmino Dias
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Fernanda Luisa Basei
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Luidy Kazuo Issayama
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Camila de Castro Ferezin
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | - Fernando Riback Silva
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Ana Luisa Rodrigues de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Lívia Alves dos Reis Moura
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Mariana Bonjiorno Martins
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | | | - Jörg Kobarg
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| |
Collapse
|
6
|
Botto AEC, Muñoz JC, Giono LE, Nieto-Moreno N, Cuenca C, Kornblihtt AR, Muñoz MJ. Reciprocal regulation between alternative splicing and the DNA damage response. Genet Mol Biol 2020; 43:e20190111. [PMID: 32236390 PMCID: PMC7197977 DOI: 10.1590/1678-4685-gmb-2019-0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Splicing, the process that catalyzes intron removal and flanking exon ligation, can occur in different ways (alternative splicing) in immature RNAs transcribed from a single gene. In order to adapt to a particular context, cells modulate not only the quantity but also the quality (alternative isoforms) of their transcriptome. Since 95% of the human coding genome is subjected to alternative splicing regulation, it is expected that many cellular pathways are modulated by alternative splicing, as is the case for the DNA damage response. Moreover, recent evidence demonstrates that upon a genotoxic insult, classical DNA damage response kinases such as ATM, ATR and DNA-PK orchestrate the gene expression response therefore modulating alternative splicing which, in a reciprocal way, shapes the response to a damaging agent.
Collapse
Affiliation(s)
- Adrian E Cambindo Botto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Juan C Muñoz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Luciana E Giono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Nicolás Nieto-Moreno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Carmen Cuenca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Manuel J Muñoz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiologia, Biologia Molecular y Celular, Instituto de Fisiologia, Biologia Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina.,Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| |
Collapse
|