1
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
2
|
Wang H, Han Y, Wu C, Zhang B, Zhao Y, Zhu J, Han Y, Wang J. Comparative transcriptome profiling of resistant and susceptible foxtail millet responses to Sclerospora graminicola infection. BMC PLANT BIOLOGY 2022; 22:567. [PMID: 36471245 PMCID: PMC9724433 DOI: 10.1186/s12870-022-03963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Downy mildew of foxtail millet, which is caused by the biotrophic oomycete Sclerospora graminicola (Sacc.) Schroeter, is one of the most disruptive diseases. The foxtail millet-S. graminicola interaction is largely unexplored. Transcriptome sequencing technology can help to reveal the interaction mechanism between foxtail millet and its pathogens. RESULTS Transmission electron microscopy observations of leaves infected with S. graminicola showed that the structures of organelles in the host cells gradually became deformed and damaged, or even disappeared from the 3- to 7-leaf stages. However, organelles in the leaves of resistant variety were rarely damaged. Moreover, the activities of seven cell wall degrading enzymes in resistant and susceptible varieties were also quite different after pathogen induction and most of enzymes activities were significantly higher in the susceptible variety JG21 than in the resistant variety G1 at all stages. Subsequently, we compared the transcriptional profiles between the G1 and JG21 in response to S. graminicola infection at 3-, 5-, and 7-leaf stages using RNA-Seq technology. A total of 473 and 1433 differentially expressed genes (DEGs) were identified in the resistant and susceptible varieties, respectively. The pathway analysis of the DEGs showed that the highly enriched categories were related to glutathione metabolism, plant hormone signalling, phenylalanine metabolism, and cutin, suberin and wax biosynthesis. Some defence-related genes were also revealed in the DEGs, including leucine-rich protein kinase, Ser/Thr protein kinase, peroxidase, cell wall degrading enzymes, laccases and auxin response genes. Our results also confirmed the linkage of transcriptomic data with qRT-PCR data. In particular, LRR protein kinase encoded by Seita.8G131800, Ser/Thr protein kinase encoded by Seita.2G024900 and Seita. 2G024800, which have played an essential resistant role during the infection by S. graminicola. CONCLUSIONS Transcriptome sequencing revealed that host resistance to S. graminicola was likely due to the activation of defence-related genes, such as leucine-rich protein kinase and Ser/Thr protein kinase. Our study identified pathways and genes that contribute to the understanding of the interaction between foxtail millet and S. graminicola at the transcriptomic level. The results will help us better understand the resistance mechanism of foxtail millet against S. graminicola.
Collapse
Affiliation(s)
- He Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanqing Han
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Caijuan Wu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaofei Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiao Zhu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taiyuan, 030031, China.
| | - Jianming Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
3
|
Faizah R, Putranto RA, Raharti VR, Supena N, Sukma D, Budiani A, Wening S, Sudarsono S. Defense response changes in roots of oil palm (Elaeis guineensis Jacq.) seedlings after internal symptoms of Ganoderma boninense Pat. infection. BMC PLANT BIOLOGY 2022; 22:139. [PMID: 35331141 PMCID: PMC8944027 DOI: 10.1186/s12870-022-03493-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/25/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND The development of basal stem rot (BSR) disease in oil palm is associated with lignin during vegetative growth and salicylic acid (SA) biosynthesis. The increase in the lignin content, SA accumulation, growth, and root biomass could indicate the resistance of oil palm seedlings to BSR disease. Therefore, although there are many studies on the interactions between the Ganoderma boninense and oil palm, research on evaluation of physiological processes, biochemistry, and molecules occurring during early internal symptoms of BSR in roots of oil palm (Elaeis guineensis Jacq.) are essential. RESULTS Ganoderma boninense inoculation indicated that C01, C02, and C05 seedlings were susceptible, while the other three seedlings, C03, C07, and C08, were resistant based on Ganoderma Disease Index (GDI). Infection by G. boninense in the most susceptible seedlings C05 reduced fresh weight of roots (FW) by 9.0%, and lignin content by 10.9%. The most resistant seedlings C08 were reduced by only 8.4%, and 0.2% regarding their fresh weight and lignin content, respectively. BSR disease induced SA accumulation in the most susceptible C08 and decreased peroxidase (PRX) enzyme (EC 1.11.1.7) activities in root tissues of oil palm seedlings except C07 and C08 where PRX activities remained high in the 4 months after planting. Infection with G. boninense also increased glutathione S-transferase U19-like (EgGSTU19) gene expression in the root tissues of susceptible seedlings, while laccase-24 (EgLCC24) gene expression was associated with resistance against BSR disease. Based on the relative expression of twelve genes, two genes are categorized as receptors (EgWAKL5, EgMIK1), two genes as biosynthesis signal transduction compound (EgOPR5, EgACO1), five genes as defense responses (EgROMT, EgSOT12, EgLCC24, EgGLT3, EgGSTU19), and one gene as trans-resveratrol di-O-methyltransferase-like (EgRNaseIII) predicted related to BSR infection. While two other genes remain unknown (EgUnk1, EgUnk2). CONCLUSIONS Ganoderma infection-induced SA accumulation and lignification in resistant accessions promote the seedlings root biomass. Oil palm seedlings have a synergistic physical, biochemical, and molecular defense mechanism to the BSR disease. The utilization of nucleotide-based molecular markers using EgLCC24 gene is able to detect resistant oil palm seedlings to G. boninense.
Collapse
Affiliation(s)
- Rokhana Faizah
- Plant Breeding and Biotechnology Study Program, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, Dramaga Campus, Bogor, 16680, Indonesia.
- Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Medan, North Sumatera, 20158, Indonesia.
| | - Riza Arief Putranto
- Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor, 16128, Indonesia
- PT Riset Perkebunan Nusantara (Nusantara Estate Crops Research), Jl. Salak no. 1A, Bogor, 16128, Indonesia
| | - Vivi Restu Raharti
- Department of Agrotechnology, Agriculture Faculty, Jenderal Soedirman University, Jl. Dr. Soeparno No. 63, Karangwangkal, North Purwokerto, Central Java, 53122, Indonesia
| | - Nanang Supena
- Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Medan, North Sumatera, 20158, Indonesia
| | - Dewi Sukma
- Plant Breeding and Biotechnology Study Program, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, Dramaga Campus, Bogor, 16680, Indonesia
| | - Asmini Budiani
- Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor, 16128, Indonesia
| | - Sri Wening
- Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Medan, North Sumatera, 20158, Indonesia
| | - Sudarsono Sudarsono
- Plant Breeding and Biotechnology Study Program, Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, Dramaga Campus, Bogor, 16680, Indonesia
| |
Collapse
|
4
|
Dash M, Somvanshi VS, Budhwar R, Godwin J, Shukla RN, Rao U. A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes. PLANTA 2021; 253:108. [PMID: 33866432 DOI: 10.1007/s00425-021-03625-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Resistance to rice root-knot nematode Meloidogyne graminicola in a mutant rice line is suggested to be conferred by higher expression of several genes putatively involved in damage-associated molecular pattern recognition, secondary metabolite biosynthesis including phytoalexins, and defence-related genes. Meloidogyne graminicola has emerged as the most destructive plant-parasitic nematode disease of rice (Oryza sativa L.). Genetic resistance to M. graminicola is one of the most effective methods for its management. A M. graminicola-resistant O. sativa ssp. indica mutant line-9 was previously identified through a forward genetic screen (Hatzade et al. Biologia 74:1197-1217, 2019). In the present study, we used RNA-Sequencing to investigate the molecular mechanisms conferring nematode resistance to the mutant line-9 compared to the susceptible parent JBT 36/14 at 24 h post-infection. A total of 674 transcripts were differentially expressed in line-9. Early regulation of genes putatively related to nematode damage-associated molecular pattern recognition (e.g., wall-associated receptor kinases), signalling [Nucleotide-binding, Leucine-Rich Repeat (NLRs)], pathogenesis-related (PR) genes (PR1, PR10a), defence-related genes (NB-ARC domain-containing genes), as well as a large number of genes involved in secondary metabolites including diterpenoid biosynthesis (CPS2, OsKSL4, OsKSL10, Oscyp71Z2, oryzalexin synthase, and momilactone A synthase) was observed in M. graminicola-resistant mutant line-9. It may be suggested that after the nematode juveniles penetrate the roots of line-9, early recognition of invading nematodes triggers plant immune responses mediated by phytoalexins, and other defence proteins such as PR proteins inhibit nematode growth and reproduction. Our study provides the first transcriptomic comparison of nematode-resistant and susceptible rice plants in the same genetic background and adds to the understanding of mechanisms underlying plant-nematode resistance in rice.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Marzec M, Situmorang A, Brewer PB, Brąszewska A. Diverse Roles of MAX1 Homologues in Rice. Genes (Basel) 2020; 11:E1348. [PMID: 33202900 PMCID: PMC7709044 DOI: 10.3390/genes11111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 enzymes encoded by MORE AXILLARY GROWTH1 (MAX1)-like genes produce most of the structural diversity of strigolactones during the final steps of strigolactone biosynthesis. The diverse copies of MAX1 in Oryza sativa provide a resource to investigate why plants produce such a wide range of strigolactones. Here we performed in silico analyses of transcription factors and microRNAs that may regulate each rice MAX1, and compared the results with available data about MAX1 expression profiles and genes co-expressed with MAX1 genes. Data suggest that distinct mechanisms regulate the expression of each MAX1. Moreover, there may be novel functions for MAX1 homologues, such as the regulation of flower development or responses to heavy metals. In addition, individual MAX1s could be involved in specific functions, such as the regulation of seed development or wax synthesis in rice. Our analysis reveals potential new avenues of strigolactone research that may otherwise not be obvious.
Collapse
Affiliation(s)
- Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Philip B. Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Agnieszka Brąszewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| |
Collapse
|