1
|
Qin LH, Jiang Z, Yang C, Song R, Chen PY, Xu W, Zeng G, Liao JY, Long L. Spatial single-cell maps reveal ST6GAL1 promoting ovarian cancer metastasis. Glycoconj J 2025:10.1007/s10719-025-10177-y. [PMID: 39883364 DOI: 10.1007/s10719-025-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data. In addition, pseudo-time trajectory analysis, cell-cell communication networks, transcription factor activity profiling, spatial interaction mapping, and prognostic significance of gene expression were assessed. A significant enrichment of ST6GAL1 was observed in the epithelial cells of ovarian cancer, particularly in peritoneal metastases, which exhibited elevated metabolic activity compared to primary tumors. The levels of ST6GAL1 were significantly high in peritumoral and adjacent non-tumorous tissues, with increased metabolic activity, while the tumor core demonstrated ST6GAL1-negative epithelial cells. Extensive cell-cell communication and transcription factor networks were unraveled, potentially influencing vascular permeability and intracellular signaling. Clinically, high expression of ST6GAL1 in epithelial cells is associated with diminished progression-free survival, indicating its prognostic potential. In conclusion, ST6GAL1 is likely to significantly impact the progression and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Lan-Hui Qin
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Zijian Jiang
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chongze Yang
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rui Song
- Department of Radiology, Guangxi Medical University, No.22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Pei-Yin Chen
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Weihui Xu
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Guanzhen Zeng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Jin-Yuan Liao
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Annibalini G, Di Patria L, Valli G, Bocconcelli M, Saltarelli R, Ferri L, Barberi L, Fanelli F, Morrone A, Barone R, Guerrini R, Musarò A, Stocchi V, Barbieri E. Impaired myoblast differentiation and muscle IGF-1 receptor signaling pathway activation after N-glycosylation inhibition. FASEB J 2024; 38:e23797. [PMID: 38963344 DOI: 10.1096/fj.202400213rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.
Collapse
Affiliation(s)
- Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giacomo Valli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lorenzo Ferri
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Laura Barberi
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Fabiana Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Amelia Morrone
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia, University of Rome La Sapienza, Rome, Italy
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Rome, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
3
|
Wang X, Yue L, Zhang F, Bao X, Song W, Li Z. Roles of bovine sialoglycoproteins for anti-skin aging and accelerating skin wound healing. J Cosmet Dermatol 2023; 22:3470-3479. [PMID: 37310204 DOI: 10.1111/jocd.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fibroblasts are the most predominant cell subpopulation in the dermal layer of human skin, they play an important role in maintaining skin architecture and function. The senescence of fibroblasts is one of major causes of skin aging and chronic wound in the elderly, which is accompanied with a reduction of α2,6-sialylation on the cell surface. AIMS In this study, we investigated the effects of the bovine sialoglycoproteins on normal human dermal fibroblasts (NHDF). RESULTS The results showed that bovine sialoglycoproteins could promote the proliferation and migration of NHDF cells, and accelerate the contraction of fibroblast-populated collagen lattice (FPCL). The average doubling time of NHDF cells treated with bovine sialoglycoproteins (0.5 mg/mL) was 31.1 ± 1.0 h whereas that was 37.9 ± 2.7 h for the control (p ˂ 0.05). Moreover, the expression of basic fibroblast growth factor (FGF-2) was upregulated, while that of transforming growth factor-beta 1 (TGF-β1) and human type I collagen (COL-I) were downregulated in treated NHDF cells. Furthermore, bovine sialoglycoproteins treatment significantly enhanced the α2,6-sialylation on the cell surfaces, which was consistent with the upregulation of α2,6-sialyltransferase I (ST6GAL1) expression. CONCLUSIONS These results indicated that the bovine sialoglycoproteins might be developed as a reagent against skin aging in the cosmetic industry, or as a new candidate for accelerating skin wound healing and inhibiting scar formation.
Collapse
Affiliation(s)
- Xilong Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Lixin Yue
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
4
|
Xu N, Yu Y, Duan C, Wei J, Sun W, Jiang C, Jian B, Cao W, Jia L, Ma X. Quantitative proteomics identifies and validates urinary biomarkers of rhabdomyosarcoma in children. Clin Proteomics 2023; 20:10. [PMID: 36918772 PMCID: PMC10012572 DOI: 10.1186/s12014-023-09401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma with poor prognosis in children. The 5-year survival rate for early RMS has improved, whereas it remains unsatisfactory for advanced patients. Urine can rapidly reflect changes in the body and identify low-abundance proteins. Early screening of tumor markers through urine in RMS allows for earlier treatment, which is associated with better outcomes. METHODS RMS patients under 18 years old, including those newly diagnosed and after surgery, were enrolled. Urine samples were collected at the time points of admission and after four cycles of chemotherapy during follow-up. Then, a two-stage workflow was established. (1) In the discovery stage, differential proteins (DPs) were initially identified in 43 RMS patients and 12 healthy controls (HCs) using a data-independent acquisition method. (2) In the verification stage, DPs were further verified as biomarkers in 54 RMS patients and 25 HCs using parallel reaction monitoring analysis. Furthermore, a receiver operating characteristic (ROC) curve was used to construct the protein panels for the diagnosis of RMS. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) software were used to perform bioinformatics analysis. RESULTS A total of 251 proteins were significantly altered in the discovery stage, most of which were enriched in the head, neck and urogenital tract, consistent with the most common sites of RMS. The most overrepresented biological processes from GO analysis included immunity, inflammation, tumor invasion and neuronal damage. Pathways engaging the identified proteins revealed 33 common pathways, including WNT/β-catenin signaling and PI3K/AKT signaling. Finally, 39 proteins were confirmed as urinary biomarkers for RMS, and a diagnostic panel composed of 5 candidate proteins (EPS8L2, SPARC, HLA-DRB1, ACAN, and CILP) was constructed for the early screening of RMS (AUC: 0.79, 95%CI = 0.66 ~ 0.92). CONCLUSIONS These findings provide novel biomarkers in urine that are easy to translate into clinical diagnosis of RMS and illustrate the value of global and targeted urine proteomics to identify and qualify candidate biomarkers for noninvasive molecular diagnosis.
Collapse
Affiliation(s)
- Na Xu
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China.,Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Chao Duan
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China
| | - Jing Wei
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Wei Sun
- Proteomics Research Center, Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chiyi Jiang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China
| | - Binglin Jian
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China
| | - Wang Cao
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Lulu Jia
- Clinical Research Center, Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, No. 56 Nanlishi Road, Beijing, 100045, China.
| | - Xiaoli Ma
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, No. 56 Nalishi Road, Beijing, 100045, China.
| |
Collapse
|
5
|
Blocking interleukin-23 ameliorates neuromuscular and thymic defects in myasthenia gravis. J Neuroinflammation 2023; 20:9. [PMID: 36639663 PMCID: PMC9837970 DOI: 10.1186/s12974-023-02691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine receptor (AChR) myasthenia gravis (MG) is a chronic autoimmune disease characterized by muscle weakness. The AChR+ autoantibodies are produced by B-cells located in thymic ectopic germinal centers (eGC). No therapeutic approach is curative. The inflammatory IL-23/Th17 pathway is activated in the thymus as well as in the blood and the muscle, contributing to the MG pathogenic events. We aimed to study a potential new therapeutic approach that targets IL-23p19 (IL-23) in the two complementary preclinical MG models: the classical experimental MG mouse model (EAMG) based on active immunization and the humanized mouse model featuring human MG thymuses engrafted in NSG mice (NSG-MG). In both preclinical models, the anti-IL-23 treatment ameliorated MG clinical symptoms. In the EAMG, the treatment reduced IL-17 related inflammation, anti-AChR IgG2b antibody production, activated transduction pathway involved in muscle regeneration and ameliorated the signal transduction at the neuromuscular junction. In the NSG-MG model, the treatment reduced pathogenic Th17 cell population and expression of genes involved in eGC stabilization and B-cell development in human MG thymus biopsies. Altogether, these data suggest that a therapy targeting IL-23p19 may promote significant clinical ameliorations in AChR+ MG disease due to concomitant beneficial effects on the thymus and skeletal muscle defects.
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Pleić N, Babić Leko M, Gunjača I, Boutin T, Torlak V, Matana A, Punda A, Polašek O, Hayward C, Zemunik T. Genome-Wide Association Analysis and Genomic Prediction of Thyroglobulin Plasma Levels. Int J Mol Sci 2022; 23:ijms23042173. [PMID: 35216288 PMCID: PMC8876738 DOI: 10.3390/ijms23042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Thyroglobulin (Tg) is an iodoglycoprotein produced by thyroid follicular cells which acts as an essential substrate for thyroid hormone synthesis. To date, only one genome-wide association study (GWAS) of plasma Tg levels has been performed by our research group. Utilizing recent advancements in computation and modeling, we apply a Bayesian approach to the probabilistic inference of the genetic architecture of Tg. We fitted a Bayesian sparse linear mixed model (BSLMM) and a frequentist linear mixed model (LMM) of 7,289,083 variants in 1096 healthy European-ancestry participants of the Croatian Biobank. Meta-analysis with two independent cohorts (total n = 2109) identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) within the ST6GAL1 gene (p<5×10-8). BSLMM revealed additional association signals on chromosomes 1, 8, 10, and 14. For ST6GAL1 and the newly uncovered genes, we provide physiological and pathophysiological explanations of how their expression could be associated with variations in plasma Tg levels. We found that the SNP-heritability of Tg is 17% and that 52% of this variation is due to a small number of 16 variants that have a major effect on Tg levels. Our results suggest that the genetic architecture of plasma Tg is not polygenic, but influenced by a few genes with major effects.
Collapse
Affiliation(s)
- Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (T.B.); (C.H.)
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia; (V.T.); (A.P.)
| | - Antonela Matana
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia; (V.T.); (A.P.)
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia;
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (T.B.); (C.H.)
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (N.P.); (M.B.L.); (I.G.); (A.M.)
- Correspondence: ; Tel.: +385-2155-7888
| |
Collapse
|
9
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Gerrard JC, Hay JP, Adams RN, Williams JC, Huot JR, Weathers KM, Marino JS, Arthur ST. Current Thoughts of Notch's Role in Myoblast Regulation and Muscle-Associated Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312558. [PMID: 34886282 PMCID: PMC8657396 DOI: 10.3390/ijerph182312558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch’s contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch’s importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch’s contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch’s orchestration is useful for developing therapeutic targets for disease.
Collapse
Affiliation(s)
- Jeffrey C. Gerrard
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Jamison P. Hay
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Ryan N. Adams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - James C. Williams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Kaitlin M. Weathers
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joseph S. Marino
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Susan T. Arthur
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
- Correspondence:
| |
Collapse
|
11
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Chen X, Sun Y, Zhang T, Roepstorff P, Yang F. Comprehensive Analysis of the Proteome and PTMomes of C2C12 Myoblasts Reveals that Sialylation Plays a Role in the Differentiation of Skeletal Muscle Cells. J Proteome Res 2020; 20:222-235. [PMID: 33216553 DOI: 10.1021/acs.jproteome.0c00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The C2C12 myoblast is a model that has been used extensively to study the process of skeletal muscle differentiation. Proteomics has advanced our understanding of skeletal muscle biology and also the differentiation process of skeletal muscle cells. However, there is still no comprehensive analysis of C2C12 myoblast proteomes, which is important for the understanding of key drivers for the differentiation of skeletal muscle cells. Here, we conducted multidimensional proteome profiling to get a comprehensive analysis of proteomes and PTMomes of C2C12 myoblasts with a TiSH strategy. A total of 8313 protein groups were identified, including 7827 protein groups from nonmodified peptides, 3803 phosphoproteins, and 977 formerly sialylated N-linked glycoproteins. Integrated analysis of proteomic and PTMomic data showed that almost all of the kinases and transcription factors in the muscle cell differentiation pathway were phosphorylated. Further analysis indicated that sialylation might play a role in the differentiation of C2C12 myoblasts. Further functional analysis demonstrated that C2C12 myoblasts showed a decreased level of sialylation during skeletal muscle cell differentiation. Inhibition of sialylation with the sialyltransferase inhibitor 3Fax-Neu5Ac resulted in the lower expression of MHC and suppression of myoblast fusion. In all, these results indicate that sialylation has an effect on the differentiation of skeletal muscle cells.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Yaping Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|