1
|
Pobeguts OV, Galyamina MA, Mikhalchik EV, Kovalchuk SI, Smirnov IP, Lee AV, Filatova LY, Sikamov KV, Panasenko OM, Gorbachev AY. The Role of Propionate-Induced Rearrangement of Membrane Proteins in the Formation of the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Int J Mol Sci 2024; 25:10118. [PMID: 39337603 PMCID: PMC11431891 DOI: 10.3390/ijms251810118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Adhesive-invasive E. coli has been suggested to be associated with the development of Crohn's disease (CD). It is assumed that they can provoke the onset of the inflammatory process as a result of the invasion of intestinal epithelial cells and then, due to survival inside macrophages and dendritic cells, stimulate chronic inflammation. In previous reports, we have shown that passage of the CD isolate ZvL2 on minimal medium M9 supplemented with sodium propionate (PA) as a carbon source stimulates and inhibits the adherent-invasive properties and the ability to survive in macrophages. This effect was reversible and not observed for the laboratory strain K12 MG1655. We were able to compare the isogenic strain AIEC in two phenotypes-virulent (ZvL2-PA) and non-virulent (ZvL2-GLU). Unlike ZvL2-GLU, ZvL2-PA activates the production of ROS and cytokines when interacting with neutrophils. The laboratory strain does not cause a similar effect. To activate neutrophils, bacterial opsonization is necessary. Differences in neutrophil NADH oxidase activation and ζ-potential for ZvL2-GLU and ZvL2-PA are associated with changes in membrane protein abundance, as demonstrated by differential 2D electrophoresis and LC-MS. The increase in ROS and cytokine production during the interaction of ZvL2-PA with neutrophils is associated with a rearrangement of the abundance of membrane proteins, which leads to the activation of Rcs and PhoP/Q signaling pathways and changes in the composition and/or modification of LPS. Certain isoforms of OmpA may play a role in the formation of the virulent phenotype of ZvL2-PA and participate in the activation of NADPH oxidase in neutrophils.
Collapse
Affiliation(s)
- Olga V Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Maria A Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Elena V Mikhalchik
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Ulitsa Mikluho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Igor P Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Alena V Lee
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Lyubov Yu Filatova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Kirill V Sikamov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Alexey Yu Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| |
Collapse
|
2
|
Galyamina MA, Pobeguts OV, Firova RK, Mosievich DV, Kharaeva ZF, Panasenko OM, Balabushevich NG, Mikhalchik EV. Biological Activity of Hybrid Vaterite-Pectin Microparticles Towards Bacteria E. coli and Human Neutrophils. Bull Exp Biol Med 2024; 177:238-242. [PMID: 39090460 DOI: 10.1007/s10517-024-06164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 08/04/2024]
Abstract
Interaction of microbiota with hybrid vaterite-pectin microparticles as an attractive multifunctional vehicle for mucosal delivery should not provoke inflammation. Our purpose was to study the reaction of bacteria E. coli strain Mg1655 and isolate SharL from a patient with Crohn disease on the cultivation with hybrid microparticles and vaterite, and the subsequent activation of neutrophils. Vaterite-pectin microparticles enhanced leakage of ATP from bacteria. For E. coli Mg1655, the concentration of DNA decreased, while intracellular ATP increased. For E. coli SharL, the intracellular ATP decreased with simultaneous growth of DNA. Bacteria and microparticles together did not enhance activation of neutrophils in comparison with the particles per se in the medium without serum and in comparison with bacteria in the medium supplemented with serum; microparticles did not reduce functional activity of neutrophils.
Collapse
Affiliation(s)
- M A Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - O V Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - R K Firova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - D V Mosievich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Z F Kharaeva
- Kabardino-Balkarian State University named after Kh. M. Berbekov, Nalchik, Kabardino-Balkarian Republic, Russia
| | - O M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - N G Balabushevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - E V Mikhalchik
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
3
|
Smith TJ, Sundarraman D, Melancon E, Desban L, Parthasarathy R, Guillemin K. A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut. Cell Host Microbe 2023; 31:1371-1385.e6. [PMID: 37516109 PMCID: PMC10492631 DOI: 10.1016/j.chom.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
In a healthy gut, microbes are often aggregated with host mucus, yet the molecular basis for this organization and its impact on intestinal health are unclear. Mucus is a viscous physical barrier separating resident microbes from epithelia, but it also provides glycan cues that regulate microbial behaviors. Here, we describe a mucin-sensing pathway in an Aeromonas symbiont of zebrafish, Aer01. In response to the mucin-associated glycan N-acetylglucosamine, a sensor kinase regulates the expression of an aggregation-promoting adhesin we named MbpA. Upon MbpA disruption, Aer01 colonizes to normal levels but is largely planktonic and more pro-inflammatory. Increasing cell surface MbpA rescues these traits. MbpA-like adhesins are common in human-associated bacteria, and the expression of an Akkermansia muciniphila MbpA-like adhesin in MbpA-deficient Aer01 restores lumenal aggregation and reverses its pro-inflammatory character. Our work demonstrates how resident bacteria use mucin glycans to modulate behaviors congruent with host health.
Collapse
Affiliation(s)
- T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Laura Desban
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
4
|
Mikhalchik E, Basyreva LY, Gusev SA, Panasenko OM, Klinov DV, Barinov NA, Morozova OV, Moscalets AP, Maltseva LN, Filatova LY, Pronkin EA, Bespyatykh JA, Balabushevich NG. Activation of Neutrophils by Mucin–Vaterite Microparticles. Int J Mol Sci 2022; 23:ijms231810579. [PMID: 36142492 PMCID: PMC9501559 DOI: 10.3390/ijms231810579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite–mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of −1 ± 1 mV and −7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL−1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1β, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1–10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin–vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Correspondence: ; Tel.: +7-4-99-2464352
| | - Liliya Yu. Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Sergey A. Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Nikolay A. Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga V. Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- National Research Center of Epidemiology and Microbiology of N.F. Gamaleya, 123098 Moscow, Russia
| | - Alexander P. Moscalets
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Liliya N. Maltseva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lyubov Yu. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniy A. Pronkin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Julia A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | | |
Collapse
|
5
|
Mikhalchik EV, Boychenko OP, Moskalets AP, Morozova OV, Klinov DV, Basyreva LY, Gusev SA, Panasenko OM, Filatova LY, Balabushevich NG. Stimulation Of Neutrophil Oxidative Burst By Calcium Phosphate Particles With Adsorbed Mucin. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective — Mucin can promote formation of gallstones via precipitation with calcium phosphate. The proinflammatory effect of mucin-coated particles is still unclear, and our aim was to study the role of mucin sorption in activation of neutrophil respiratory burst. Material and Methods — Polydisperse calcium phosphate nanowires (CP) were prepared from hot gelatin solution and according to scanning electron microscopy (SEM) had the length 1-10 μm and thickness 50-450 nm. CP were incubated in mucin or human serum albumin (HSA) giving CP-Muc and CP-HSA. Their hemolytic activity towards human erythrocytes was assayed, and neutrophil lucigenin- and luminol- chemiluminescence (Luc-CL and Lum-CL) response to CP, CP-HSA and CP-Muc was measured. Cytokine RNA was detected in neutrophils by means of reverse transcription with subsequent real-time PCR. Cytokines (IL-1β, IL-6, IL-8, IL-10) were assessed in cell medium by ELISA. Results and Conclusion — Hemolytic activity of CP was 3.0±0.5%, mucin sorption (0.019 mg/mg) reduced it to 0.24±0.04% (p<0.05) as well as HSA. CP and CP-HSA stimulated neutrophil Lum-CL and Luc-Cl by 2-3 times vs. spontaneous values while for CP-Muc the effect was 10-fold and higher. No increased cytokine gene expression or cytokine secretion was detected after 1h incubation of neutrophils with samples. Obviously, sorption of mucin but not that of HSA stimulated generation of reactive oxygen and halogen species with no increase in cytokine production. Thus, the mucin-coated CP has the potential to contribute to gallstone-associated cholecystitis via oxidative damage of mucosa and epithelium.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia
| | - Olga P. Boychenko
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | | - Olga V. Morozova
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia; National Research Center of Epidemiology and Microbiology of N.F. Gamaleya, Moscow, Russia
| | - Dmitry V. Klinov
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia
| | - Liliya Yu. Basyreva
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia
| | - Sergey A. Gusev
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research Clinical Center of Physicochemical Medicine, Moscow, Russia
| | | | | |
Collapse
|
6
|
Zhu Z, Yang L, Yu P, Wang Y, Peng X, Chen L. Comparative Proteomics and Secretomics Revealed Virulence and Antibiotic Resistance-Associated Factors in Vibrio parahaemolyticus Recovered From Commonly Consumed Aquatic Products. Front Microbiol 2020; 11:1453. [PMID: 32765437 PMCID: PMC7381183 DOI: 10.3389/fmicb.2020.01453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Vibrio parahaemolyticus is a seafoodborne pathogen that can cause severe gastroenteritis and septicemia diseases in humans and even death. The emergence of multidrug-resistant V. parahaemolyticus leads to difficulties and rising costs of medical treatment. The bacterium of environmental origins containing no major virulence genes (tdh and trh) has been reported to be associated with infectious diarrhea disease as well. Identification of risk factors in V. parahaemolyticus is imperative for assuming food safety. In this study, we obtained secretomic and proteomic profiles of V. parahaemolyticus isolated from 12 species of commonly consumed aquatic products and identified candidate protein spots by using two-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry techniques. A total of 11 common and 28 differential extracellular proteins were found from distinct secretomic profiles, including eight virulence-associated proteins: outer membrane channel TolC, maltoporin, elongation factor Tu, enolase, transaldolase, flagellin C, polar flagellin B/D, and superoxide dismutase, as well as five antimicrobial and/or heavy metal resistance-associated ABC transporter proteins. Comparison of proteomic profiles derived from the 12 V. parahaemolyticus isolates also revealed five intracellular virulence-related proteins, including aldehyde-alcohol dehydrogenase, outer membrane protein A, alkyl hydroperoxide reductase C, phosphoenolpyruvate-protein phosphotransferase, and phosphoglycerate kinase. Additionally, our data indicated that aquatic product matrices significantly altered proteomic profiles of the V. parahaemolyticus isolates with a number of differentially expressed proteins identified. The results in this study meet the increasing need for novel diagnosis candidates of the leading seafoodborne pathogen worldwide.
Collapse
Affiliation(s)
- Zhuoying Zhu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Moshkovskaya M, Vakhrusheva T, Rakitina D, Baykova J, Panasenko O, Basyreva L, Gusev S, Gusev A, Mikhalchik E, Smolina N, Dobretsov G, Scherbakov P, Parfenov A, Fadeeva N, Pobeguts O, Govorun V. Neutrophil activation by Escherichia coli isolates from human intestine: effects of bacterial hydroperoxidase activity and surface hydrophobicity. FEBS Open Bio 2020; 10:414-426. [PMID: 31961067 PMCID: PMC7050253 DOI: 10.1002/2211-5463.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 01/27/2023] Open
Abstract
Successful colonization of the intestine requires that bacteria interact with the innate immune system and, in particular, neutrophils. Progression of inflammatory bowel diseases (IBD) is associated with alterations in gut microbiota, and dysbiosis in Crohn’s disease (CD) patients is often associated with an expansion of Escherichia coli. Here, we investigated the ability of such E. coli isolates to avoid neutrophil activation and to utilize reactive oxygen species. Neutrophil activation was detected in vitro in normal human blood via luminol chemiluminescence (CL) induced by reactive oxygen and halogen species generated by neutrophils. No significant difference in neutrophil activation in vitro was detected between isolates from inflamed (23 isolates) vs healthy intestines (5 isolates), with 10‐fold variation within both groups (2.9–61.2 mV). CL activity of isolates from the same patient differed by 1.5–5 times. Twenty‐four isolates from ileal aspirate, biopsy, and feces of seven patients with CD and one patient with no intestine inflammation were tested for extracellular peroxidase and catalase activity and cell surface hydrophobicity. Average values between patients varied from 26 ± 3 to 73 ± 18 µmol·g−1 of air dry weight for peroxidase activity, from 15 ± 2 to 189 ± 56 mmol·g−1 of air dry weight for catalase activity, and from 5 ± 3 to 105 ± 9 a.u. for the hydrophobic probe fluorescence. Extracellular peroxidase activity and hydrophobicity of bacterial cell surface correlated negatively with stimulated neutrophil CL. The ability of some isolates to avoid neutrophil activation and to utilize reactive oxygen species may provide a strategy to survive assault by the innate immune system.
Collapse
Affiliation(s)
- Mariam Moshkovskaya
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Tatyana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Oleg Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Lilia Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Natalia Smolina
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Gennadiy Dobretsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia.,Moscow Clinical Scientific Center, Central Scientific Institute of Gastroenterology, Moscow, Russia
| | - Asfold Parfenov
- Moscow Clinical Scientific Center, Central Scientific Institute of Gastroenterology, Moscow, Russia
| | - Nina Fadeeva
- Moscow Clinical Scientific Center, Central Scientific Institute of Gastroenterology, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| |
Collapse
|