1
|
Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol 2023; 19:218-229. [PMID: 36443572 PMCID: PMC10367113 DOI: 10.1038/s41589-022-01202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Collapse
Affiliation(s)
- Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila R Santos
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiani B Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan Y Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio C Borges
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiane Stoffel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Priscila O Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| |
Collapse
|
2
|
Zhang J, Wang YY, Pan ZQ, Li Y, Sui J, Du LL, Ye K. Structural mechanism of protein recognition by the FW domain of autophagy receptor Nbr1. Nat Commun 2022; 13:3650. [PMID: 35752625 PMCID: PMC9233695 DOI: 10.1038/s41467-022-31439-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/16/2022] [Indexed: 12/21/2022] Open
Abstract
Neighbor of BRCA1 (Nbr1) is a conserved autophagy receptor that provides cargo selectivity to autophagy. The four-tryptophan (FW) domain is a signature domain of Nbr1, but its exact function remains unclear. Here, we show that Nbr1 from the filamentous fungus Chaetomium thermophilum uses its FW domain to bind the α-mannosidase Ams1, a cargo of selective autophagy in both budding yeast and fission yeast, and delivers Ams1 to the vacuole by conventional autophagy in heterologous fission yeast. The structure of the Ams1-FW complex was determined at 2.2 Å resolution by cryo-electron microscopy. The FW domain adopts an immunoglobulin-like β-sandwich structure and recognizes the quaternary structure of the Ams1 tetramer. Notably, the N-terminal di-glycine of Ams1 is specifically recognized by a conserved pocket of the FW domain. The FW domain becomes degenerated in fission yeast Nbr1, which binds Ams1 with a ZZ domain instead. Our findings illustrate the protein binding mode of the FW domain and reveal the versatility of Nbr1-mediated cargo recognition. Nbr1 recognizes cargos in selective autophagy. Here, authors show filamentous yeast Nbr1 binds Ams1 via an FW domain, and the cryo-EM structure reveals that Nbr1 recognizes the N-terminal di-glycine and tetrameric assembly of Ams1.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Ying Wang
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China.,National Institute of Biological Sciences, 102206, Beijing, China.,School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 102206, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Maia N, Potelle S, Yildirim H, Duvet S, Akula SK, Schulz C, Wiame E, Gheldof A, O'Kane K, Lai A, Sermon K, Proisy M, Loget P, Attié-Bitach T, Quelin C, Fortuna AM, Soares AR, de Brouwer APM, Van Schaftingen E, Nassogne MC, Walsh CA, Stouffs K, Jorge P, Jansen AC, Foulquier F. Impaired catabolism of free oligosaccharides due to MAN2C1 variants causes a neurodevelopmental disorder. Am J Hum Genet 2022; 109:345-360. [PMID: 35045343 PMCID: PMC8874227 DOI: 10.1016/j.ajhg.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sven Potelle
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Hamide Yildirim
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sandrine Duvet
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Celine Schulz
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Elsa Wiame
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katherine O'Kane
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Sermon
- Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maïa Proisy
- CHU Brest, Radiology Department, Brest University, 29609 Brest Cedex, France
| | - Philippe Loget
- Department of Pathology, Rennes University Hospital, 35000 Rennes, France
| | - Tania Attié-Bitach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France; Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Chloé Quelin
- Clinical Genetics Department, Rennes University Hospital, 35000 Rennes, France
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 Nijmegen, the Netherlands
| | - Emile Van Schaftingen
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Marie-Cécile Nassogne
- Department of Pediatric Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; Institute Of NeuroScience, Clinical Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Katrien Stouffs
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Paula Jorge
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, 1090 Brussels, Belgium.
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| |
Collapse
|
4
|
Wang YY, Zhang J, Liu XM, Li Y, Sui J, Dong MQ, Ye K, Du LL. Molecular and structural mechanisms of ZZ domain-mediated cargo selection by Nbr1. EMBO J 2021; 40:e107497. [PMID: 34169534 DOI: 10.15252/embj.2020107497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Ying-Ying Wang
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|