1
|
Kong L, Kong L, Li P, Gao L, Ma H, Shi B. Tribbles pseudokinase 3 promoted renal fibrosis by regulating the expression of DNA damage-inducible transcript 3 in diabetic nephropathy. BIOMOLECULES & BIOMEDICINE 2024; 24:1559-1570. [PMID: 38733632 PMCID: PMC11496876 DOI: 10.17305/bb.2024.10419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Diabetic nephropathy (DN) is a severe complication of prolonged diabetes, impacting millions worldwide with an increasing incidence. This study investigates the role of tribbles pseudokinase 3 (TRIB3), a protein implicated in the progression of DN, focusing on its mechanisms underlying glomerular damage. Through analysis of the Gene Expression Omnibus (GEO) database, we identified TRIB, among differentially expressed genes (DEGs) in streptozotocin (STZ)-treated C57BL/6J mice. Both in vitro and in vivo experiments were conducted to examine the effects of TRIB3 inhibition on high glucose (HG)-induced damage in podocytes and DN mouse models. The results demonstrated that TRIB3 inhibition reduced inflammatory responses and extracellular matrix (ECM) production inMPC5 cells, mediated by the downregulation of DNA damage-inducible transcript 3 (DDIT3) - a critical regulator of proinflammatory cytokine secretion and ECM synthesis. Inhibiting TRIB3 decreased inflammatory factors and ECM deposition in diabetic mice in vivo, confirming its pivotal role in DN pathogenesis. These findings indicate that TRIB3 and its interaction with DDIT3 contribute significantly to DN by promoting inflammatory cascades and ECM accumulation, presenting potential therapeutic targets for managing the disease.
Collapse
Affiliation(s)
- Lulu Kong
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Liusha Kong
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peipei Li
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Gao
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Aceves M, Granados J, Leandro AC, Peralta J, Glahn DC, Williams-Blangero S, Curran JE, Blangero J, Kumar S. Role of Neurocellular Endoplasmic Reticulum Stress Response in Alzheimer's Disease and Related Dementias Risk. Genes (Basel) 2024; 15:569. [PMID: 38790197 PMCID: PMC11121587 DOI: 10.3390/genes15050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, more than 55 million people around the world suffer from dementia, and Alzheimer's Disease and Related Dementias (ADRD) accounts for nearly 60-70% of all those cases. The spread of Alzheimer's Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD's causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs' ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs' transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD.
Collapse
Affiliation(s)
- Miriam Aceves
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (M.A.); (J.G.)
| | - Jose Granados
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (M.A.); (J.G.)
| | - Ana C. Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Juan Peralta
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - David C. Glahn
- Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sarah Williams-Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Joanne E. Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (A.C.L.); (J.P.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Satish Kumar
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (M.A.); (J.G.)
| |
Collapse
|
3
|
Ma T, Liu W, Jiang D, Zhang G, Zhao X, Zhang Y, Li Z. Analysis of Toxic Effects of Fluoride on Ovine Follicular Granulosa Cells Using RNA-Seq. Antioxidants (Basel) 2024; 13:506. [PMID: 38790611 PMCID: PMC11118050 DOI: 10.3390/antiox13050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fluoride is abundant in the environment and is an essential trace element in living organisms. However, prolonged excessive fluoride intake can lead to fluorosis, which poses a threat to the reproductive health of animals and humans. Although previous research has mainly focused on animal models, the impact of fluoride on ovine follicular granulosa cells (GCs) has not been comprehensively elucidated. This study employed RNA-Seq technology to elucidate the toxic effects of fluoride on ovine follicular GCs and its mechanism of action. Culturing primary ovine follicular GCs in vitro and subjecting them to fluoride treatment revealed 3218 differentially expressed genes (DEGs), with 2278 upregulated and 940 downregulated. Significantly, this study unveiled fluoride's induction of endoplasmic reticulum (ER) stress in cells, triggering a cascade involving the PERK pathway factor ATF4, leading to cell death via DDIT3/CHOP activation and the subsequent upregulation of CHAC1, ATF3, ERO1α, and TRIB3. These findings provide crucial insights into the toxicity of fluoride in ovine, offering a foundation for mitigating fluoride-related losses in the farming industry.
Collapse
Affiliation(s)
- Tian Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (D.J.); (G.Z.); (X.Z.)
| | - Wanruo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (D.J.); (G.Z.); (X.Z.)
| | - Didi Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (D.J.); (G.Z.); (X.Z.)
| | - Guolin Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (D.J.); (G.Z.); (X.Z.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (D.J.); (G.Z.); (X.Z.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (D.J.); (G.Z.); (X.Z.)
| | - Zongshuai Li
- Key Laboratory of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- State Key Laboratory of Grassland Agro Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
4
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
5
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
6
|
Luo G, Aldridge K, Chen T, Aslot V, Kim BG, Han EH, Singh N, Li S, Xiao TS, Sporn MB, Letterio JJ. The synthetic oleanane triterpenoid CDDO-2P-Im binds GRP78/BiP to induce unfolded protein response-mediated apoptosis in myeloma. Mol Oncol 2023; 17:2526-2545. [PMID: 37149844 DOI: 10.1002/1878-0261.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023] Open
Abstract
Synthetic oleanane triterpenoids (SOTs) are small molecules with broad anticancer properties. A recently developed SOT, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole (CDDO-2P-Im or '2P-Im'), exhibits enhanced activity and improved pharmacokinetics over CDDO-Im, a previous generation SOT. However, the mechanisms leading to these properties are not defined. Here, we show the synergy of 2P-Im and the proteasome inhibitor ixazomib in human multiple myeloma (MM) cells and 2P-Im activity in a murine model of plasmacytoma. RNA sequencing and quantitative reverse transcription PCR revealed the upregulation of the unfolded protein response (UPR) in MM cells upon 2P-lm treatment, implicating the activation of the UPR as a key step in 2P-Im-induced apoptosis. Supporting this hypothesis, the deletion of genes encoding either protein kinase R-like endoplasmic reticulum kinase (PERK) or DNA damage-inducible transcript 3 protein (DDIT3; also known as CHOP) impaired the MM response to 2P-Im, as did treatment with ISRIB, integrated stress response inhibitor, which inhibits UPR signaling downstream of PERK. Finally, both drug affinity responsive target stability and thermal shift assays demonstrated direct binding of 2P-Im to endoplasmic reticulum chaperone BiP (GRP78/BiP), a stress-inducible key signaling molecule of the UPR. These data reveal GRP78/BiP as a novel target of SOTs, and specifically of 2P-Im, and suggest the potential broader utility of this class of small molecules as modulators of the UPR.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Toby Chen
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Vivek Aslot
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Byung-Gyu Kim
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Eun Hyang Han
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Neelima Singh
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Sai Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DWC, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023; 12:2636. [PMID: 37998373 PMCID: PMC10670291 DOI: 10.3390/cells12222636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.
Collapse
Affiliation(s)
- Jiawen Xiang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Anthony J. Pompetti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P. Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel G. Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Barroso E, Díaz M, Reguera AC, Peyman M, Balsinde J, Jurado-Aguilar J, Zhang M, Rostami A, Palomer X, Ibáñez L, Vázquez-Carrera M. CHOP upregulation and dysregulation of the mature form of the SNAT2 amino acid transporter in the placentas from small for gestational age newborns. Cell Commun Signal 2023; 21:326. [PMID: 37957724 PMCID: PMC10644500 DOI: 10.1186/s12964-023-01352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The placentas from newborns that are small for gestational age (SGA; birth weight < -2 SD for gestational age) may display multiple pathological characteristics. A key determinant of fetal growth and, therefore, birth weight is placental amino acid transport, which is under the control of the serine/threonine kinase mechanistic target of rapamycin (mTOR). The effects of endoplasmic reticulum (ER) stress on the mTOR pathway and the levels of amino acid transporters are not well established. METHODS Placentas from SGA and appropriate for gestational age (AGA) newborns and the human placental BeWo cell line exposed to the ER stressor tunicamycin were used. RESULTS We detected a significant increase in the levels of C/EBP homologous protein (CHOP) in the placentas from SGA newborns compared with those from AGA newborns, while the levels of other ER stress markers were barely affected. In addition, placental mTOR Complex 1 (mTORC1) activity and the levels of the mature form of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) were also reduced in the SGA group. Interestingly, CHOP has been reported to upregulate growth arrest and DNA damage-inducible protein 34 (GADD34), which in turn suppresses mTORC1 activity. The GADD34 inhibitor guanabenz attenuated the increase in CHOP protein levels and the reduction in mTORC1 activity caused by the ER stressor tunicamycin in the human placental cell line BeWo, but it did not recover mature SNAT2 protein levels, which might be reduced as a result of defective glycosylation. CONCLUSIONS Collectively, these data reveal that GADD34A activity and glycosylation are key factors controlling mTORC1 signaling and mature SNAT2 levels in trophoblasts, respectively, and might contribute to the SGA condition. Video Abstract.
Collapse
Affiliation(s)
- Emma Barroso
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Marta Díaz
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, Barcelona, Esplugues, Spain
| | - Ana Cristina Reguera
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mona Peyman
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jesús Balsinde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Javier Jurado-Aguilar
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Meijian Zhang
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Adel Rostami
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Xavier Palomer
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Lourdes Ibáñez
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, Barcelona, Esplugues, Spain
| | - Manuel Vázquez-Carrera
- Unitat de Farmacologia, Facultat de Farmàcia I Ciències de L'Alimentació, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
9
|
McCracken NA, Liu H, Runnebohm AM, Wijeratne HRS, Wijeratne AB, Staschke KA, Mosley AL. Obtaining Functional Proteomics Insights From Thermal Proteome Profiling Through Optimized Melt Shift Calculation and Statistical Analysis With InflectSSP. Mol Cell Proteomics 2023; 22:100630. [PMID: 37562535 PMCID: PMC10494267 DOI: 10.1016/j.mcpro.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications. In this study, we have improved the Inflect data analysis pipeline (now referred to as InflectSSP, available at https://CRAN.R-project.org/package=InflectSSP) to increase the sensitivity of detection for both large and subtle changes in the proteome as measured by TPP. Specifically, InflectSSP now has integrated statistical and bioinformatic functions to improve objective functional proteomics findings from the quantitative results obtained from TPP studies through increasing both the sensitivity and specificity of the data analysis pipeline. InflectSSP incorporates calculation of a "melt coefficient" into the pipeline with production of average melt curves for biological replicate studies to aid in identification of proteins with significant melts. To benchmark InflectSSP, we have reanalyzed two previously reported datasets to demonstrate the performance of our publicly available R-based program for TPP data analysis. We report new findings following temporal treatment of human cells with the small molecule thapsigargin that induces the unfolded protein response as a consequence of inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase 2A. InflectSSP analysis of our unfolded protein response study revealed highly reproducible and statistically significant target engagement over a time course of treatment while simultaneously providing new insights into the possible mechanisms of action of the small molecule thapsigargin.
Collapse
Affiliation(s)
- Neil A McCracken
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Hao Liu
- Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, United States; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, United States
| | - Avery M Runnebohm
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
10
|
Modulation of NBAS-Related Functions in the Early Response to SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24032634. [PMID: 36768954 PMCID: PMC9916797 DOI: 10.3390/ijms24032634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (DHX34), suppressor with morphogenetic effect on genitalia 5 (SMG5), and SMG7 expression at 6 h post-infection, followed by a significant increase of these genes and also UPF1 and UPF2 at 9 h post-infection. Conversely, NBAS and other genes coding for NMD factors were not modulated. Known NMD substrates related to cell stress (Growth Arrest Specific 5, GAS5; transducin beta-like 2, TBL2; and DNA damage-inducible transcript 3, DDIT3) were increased in infected cells, possibly as a result of alterations in the NMD pathway and of a direct effect of the infection. We also found that the expression of unconventional SNARE in the ER 1, USE1 (p31) and Zeste White 10 homolog, ZW10, partners of NBAS in the retrograde transport function, significantly increased over time in infected cells. Co-localization of NBAS and UPF1 proteins did not change within 24 h of infection nor did it differ in infected versus non-infected cells at 1 and 24 h after infection; similarly, the co-localization of NBAS and p31 proteins was not altered by infection in this short time frame. Finally, both NBAS and UPF1 were found to co-localize with SARS-CoV-2 S and N proteins. Overall, these data are preliminary evidence of an interaction between NBAS and NBAS-related functions and SARS-CoV-2 in infected cells, deserving further investigation.
Collapse
|