1
|
Hinz JM. Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity. Mutat Res 2014; 766-767:19-24. [PMID: 25083139 DOI: 10.1016/j.mrfmmm.2014.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 01/10/2023]
Abstract
Glycosylases responsible for recognizing DNA lesions and initiating Base Excision Repair (BER) are impeded by the presence of histones, which are essential for compaction of the genetic material in the nucleus. Abasic sites are an abundant mutagenic lesion in the DNA, arising spontaneously and as the product of glycosylase activity, making it a common intermediate in BER. The apurinic/apyrimidinic endonuclease 1 (APE1) recognizes abasic sites and cleaves the DNA backbone adjacent to the lesion, creating the single-strand break essential for the subsequent steps of BER. In this study the endonuclease activity of human APE1 was measured on reconstituted nucleosome core particles (NCPs) with DNA containing enzymatically-created abasic sites (AP) or the abasic site analog tetrahydrofuran (TF) at different rotational positions relative to the histone core surface. The presence of histones on the DNA reduced APE1 activity overall, and the magnitude was greatly influenced by differences in orientation of the lesions along the DNA gyre relative to the histone core. Abasic moieties oriented with their phosphate backbones adjacent to the underlying histones (In) were cleaved less efficiently than those oriented away from the histone core (Out) or between the In and Out orientations (Mid). The impact on APE1 at each orientation was very similar between the AP and TF lesions, highlighting the dependability of the TF abasic analog in APE1 activity measurements in nucleosomes. Measurement of APE1 binding to the NCP substrates reveals a substantial reduction in its interaction with nucleosomes compared to naked DNA, also in a lesion orientation-dependent manner, reinforcing the concept that reduction in APE1 activity on nucleosomes is due to occlusion from its abasic DNA substrate by the histones. These results suggest that APE1 activity in nucleosomes, like BER glycosylases, is primarily regulated by its chance interactions with transiently exposed lesions.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| |
Collapse
|
2
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
3
|
Esposito V, Martino L, Citarella G, Virgilio A, Mayol L, Giancola C, Galeone A. Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Res 2009; 38:2069-80. [PMID: 20026588 PMCID: PMC2847214 DOI: 10.1093/nar/gkp1087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abasic sites represent the most frequent lesion in DNA. Since several events generating abasic sites concern guanines, this damage is particularly important in quadruplex forming G-rich sequences, many of which are believed to be involved in several biological roles. However, the effects of abasic sites in sequences forming quadruplexes have been poorly studied. Here, we investigated the effects of abasic site mimics on structural, thermodynamic and kinetic properties of parallel quadruplexes. Investigation concerned five oligodeoxynucleotides based on the sequence d(TGGGGGT), in which all guanines have been replaced, one at a time, by an abasic site mimic (dS). All sequences preserve their ability to form quadruplexes; however, both spectroscopic and kinetic experiments point to sequence-dependent different effects on the structural flexibility and stability. Sequences d(TSGGGGT) and d(TGGGGST) form quite stable quadruplexes; however, for the other sequences, the introduction of the dS in proximity of the 3′-end decreases the stability more considerably than the 5′-end. Noteworthy, sequence d(TGSGGGT) forms a quadruplex where dS does not hamper the stacking between the G-tetrads adjacent to it. These results strongly argue for the central role of apurinic/apyrimidinic site damages and they encourage the production of further studies to better delineate the consequences of their presence in the biological relevant regions of the genome.
Collapse
Affiliation(s)
- Veronica Esposito
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Boylan JA, Lawrence KA, Downey JS, Gherardini FC. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species. Mol Microbiol 2008; 68:786-99. [PMID: 18373524 PMCID: PMC2327290 DOI: 10.1111/j.1365-2958.2008.06204.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spirochetes living in an oxygen-rich environment or when challenged by host immune cells are exposed to reactive oxygen species (ROS). These species can harm/destroy cysteinyl residues, iron-sulphur clusters, DNA and polyunsaturated lipids, leading to inhibition of growth or cell death. Because Borrelia burgdorferi contains no intracellular iron, DNA is most likely not a major target for ROS via Fenton reaction. In support of this, growth of B. burgdorferi in the presence of 5 mM H(2)O(2) had no effect on the DNA mutation rate (spontaneous coumermycin A1 resistance), and cells treated with 10 mM t-butyl hydroperoxide or 10 mM H(2)O(2) show no increase in DNA damage. Unlike most bacteria, B. burgdorferi incorporates ROS-susceptible polyunsaturated fatty acids from the environment into their membranes. Analysis of lipoxidase-treated B. burgdorferi cells by Electron Microscopy showed significant irregularities indicative of membrane damage. Fatty acid analysis of cells treated with lipoxidase indicated that host-derived linoleic acid had been dramatically reduced (50-fold) in these cells, with a corresponding increase in the levels of malondialdehyde by-product (fourfold). These data suggest that B. burgdorferi membrane lipids are targets for attack by ROS encountered in the various stages of the infective cycle.
Collapse
Affiliation(s)
- Julie A Boylan
- National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 S 4th Street, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Nearly all cells express proteins that confer resistance to the mutagenic effects of oxidative DNA damage. The primary defense against the toxicity of oxidative nucleobase lesions in DNA is the base-excision repair (BER) pathway. Endonuclease III (EndoIII) is a [4Fe-4S] cluster-containing DNA glycosylase with repair activity specific for oxidized pyrimidine lesions in duplex DNA. We have determined the crystal structure of a trapped intermediate that represents EndoIII frozen in the act of repairing DNA. The structure of the protein-DNA complex provides insight into the ability of EndoIII to recognize and repair a diverse array of oxidatively damaged bases. This structure also suggests a rationale for the frequent occurrence in certain human cancers of a specific mutation in the related DNA repair protein MYH.
Collapse
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
6
|
Pompizi I, Häberli A, Leumann CJ. Oligodeoxynucleotides containing conformationally constrained abasic sites: a UV and fluorescence spectroscopic investigation on duplex stability and structure. Nucleic Acids Res 2000; 28:2702-8. [PMID: 10908326 PMCID: PMC102666 DOI: 10.1093/nar/28.14.2702] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The synthesis and incorporation into oligodeoxy-nucleotides of two novel, conformationally restricted abasic (AB) site analogs are described. The stability of oligonucleotide 18mer duplexes containing one such AB site opposite any of the four natural DNA bases was investigated by UV melting curve analysis and compared to that of duplexes containing a conformationally flexible propanediol unit 1 or a tetrahydrofuran unit 2 as an AB site analog. No major differences in the melting temperatures (DeltaT(m) 0-3 degrees C) between the different abasic duplexes were observed. All AB duplexes were found to have T(m)s that were lower by 9-15 degrees C relative to a fully matched 18mer control duplex, and by 4-10 degrees C relative to the corresponding 19mer duplexes in which the AB site is replaced by a mismatched nucleobase. Thus we conclude that the loss of stability of a duplex that is encountered by removal of a nucleobase from the stack cannot be compensated with conformational restriction of the AB site. From the van't Hoff transition enthalpies obtained from the melting curves, it appears that melting cooperativity is higher for the duplexes containing the conformationally rigid AB sites. Fluorescence quenching experiments with duplexes containing the fluorescent base 2-amino-purine (2AP) opposite the AB sites showed a weak tendency towards more efficient stacking of this base in duplexes containing the conformationally constrained AB sites. Thus, such AB sites may structurally stabilize the cavity formed by the removal of a base. Potential applications emerging from the properties of such conformationally constrained AB sites in DNA diagnostics are discussed.
Collapse
Affiliation(s)
- I Pompizi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
7
|
Barsky D, Foloppe N, Ahmadia S, Wilson DM, MacKerell AD. New insights into the structure of abasic DNA from molecular dynamics simulations. Nucleic Acids Res 2000; 28:2613-26. [PMID: 10871413 PMCID: PMC102705 DOI: 10.1093/nar/28.13.2613] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/1999] [Revised: 05/03/2000] [Accepted: 05/03/2000] [Indexed: 11/14/2022] Open
Abstract
Abasic (AP) sites constitute a common form of DNA damage, arising from the spontaneous or enzymatic breakage of the N-glycosyl bond and the loss of a nucleotide base. To examine the effects of such damage on DNA structure, especially in the vicinity of the abasic sugar, four 1.5 ns molecular dynamics simulations of double-helical DNA dodecamers with and without a single abasic (tetrahydrofuran, X) lesion in a 5'-d(CXT) context have been performed and analyzed. The results indicate that the abasic site does not maintain a hole or gap in the DNA, but instead perturbs the canonical structure and induces additional flexibility close to the abasic site. In the apurinic simulations (i.e., when a pyrimidine is opposite the AP site), the abasic sugar flipped in and out of the minor groove, and the gap was water filled, except during the occurrence of a novel non-Watson-Crick C-T base pair across the abasic site. The apyrimidinic gap was not penetrated by water until the abasic sugar flipped out and remained extrahelical. Both AP helices showed kinks of 20-30 degrees at the abasic site. The Watson-Crick hydrogen bonds are more transient throughout the DNA double helices containing an abasic site. The abasic sugar displayed an unusually broad range of sugar puckers centered around the northern pucker. The increased motion of the bases and backbone near the abasic site appear to correlate with sequence-dependent helical stability. The data indicate that abasic DNA contorts more easily and in specific ways relative to unmodified DNA, an aspect likely to be important in abasic site recognition and hydrolysis.
Collapse
Affiliation(s)
- D Barsky
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, CA 94550, USA.
| | | | | | | | | |
Collapse
|
8
|
Tomicic M, Eschbach E, Kaina B. Expression of yeast but not human apurinic/apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents. Mutat Res 1997; 383:155-65. [PMID: 9088348 DOI: 10.1016/s0921-8777(96)00055-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abasic sites represent ubiquitous DNA lesions that arise spontaneously or are induced by DNA-damaging agents. They block DNA replication and are considered to be cytotoxic and mutagenic. The key enzymes involved in the repair of abasic sites are apurinic/apyrimidinic (AP) endonucleases which process these lesions in an error-free mechanism. To analyze the role of AP endonuclease in the protection of mammalian cells against DNA damaging agents, we have transfected both the human (APE) and the yeast (APN1) AP endonuclease in Chinese hamster cells and compared the effects of expression of these genes in stable transfectants as to survival of cells and formation of chromosomal aberrations. Although APE was markedly expressed on RNA and protein level, nuclear extracts of human APE transfectants did not show a higher AP endonuclease activity than the parental line and became not more resistant to the cell killing and clastogenic effect of methyl methanesulfonate (MMS) and hydrogen peroxide (H2O2). In contrast, cells transfected with the yeast APN1 gene expressed higher AP endonuclease activity and became clearly more resistant to the cytotoxic and chromosome breakage inducing activity of the agents. The results indicate that the excision repair capacity and correspondingly the mutagen resistance can be elevated by introducing, in mammalian cells, a yeast DNA repair gene and verify that AP sites are both cytotoxic and clastogenic lesions.
Collapse
Affiliation(s)
- M Tomicic
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Germany
| | | | | |
Collapse
|
9
|
Shida T, Noda M, Sekiguchi J. Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI). Nucleic Acids Res 1996; 24:4572-6. [PMID: 8948651 PMCID: PMC146277 DOI: 10.1093/nar/24.22.4572] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli exonuclease III (AP endonuclease VI) is a DNA-repair enzyme that hydrolyzes the phosphodiester bond 5' to an abasic site in DNA. To study how the enzyme recognizes the abasic site, we used oligonucleotides containing a synthetic abasic site at any desired position in the sequence. We prepared oligonucleotides containing an abasic residue such as 2'-deoxyribosylformamide, 2'-deoxyribose, 1',2'-dideoxy ribofuranose or propanediol. Duplex oligonucleotides containing an abasic residue used in this study were cleaved on the 5' side of the abasic site by exonuclease III in spite of the varieties of the bases opposite and adjacent to the abasic site. In addition, we observed that the enzyme cleaved single-stranded oligonucleotides containing an abasic site on the 5' side of the abasic site. These findings suggest that the enzyme may principally recognize the DNA-pocket formed at an abasic site. The indole ring of the tryptophan 212 residue of the exonuclease III is probably intercalated to the abasic site. The tryptophan in the vicinity of the catalytic site is conserved in the type II AP endonuclease from various organisms.
Collapse
Affiliation(s)
- T Shida
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan.
| | | | | |
Collapse
|
10
|
Wilson DM, Bennett RA, Marquis JC, Ansari P, Demple B. Trans-complementation by human apurinic endonuclease (Ape) of hypersensitivity to DNA damage and spontaneous mutator phenotype in apn1-yeast. Nucleic Acids Res 1995; 23:5027-33. [PMID: 8559661 PMCID: PMC307509 DOI: 10.1093/nar/23.24.5027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abasic (AP) sites in DNA are potentially lethal and mutagenic. 'Class II' AP endonucleases initiate the repair of these and other DNA lesions. In yeast, the predominant enzyme of this type is Apn1, and its elimination sensitizes the cells to killing by simple alkylating agents or oxidants, and raises the rate of spontaneous mutation. We investigated the ability of the major human class II AP endonuclease, Ape, which is structurally unrelated to Apn1, to replace the yeast enzyme in vivo. Confocal immunomicroscopy studies indicate that approximately 25% of the Ape expressed in yeast is present in the nucleus. High-level Ape expression corresponding to approximately 7000 molecules per nucleus, equal to the normal Apn1 copy number, restored resistance to methyl methanesulfonate to near wild-type levels in Apn1-deficient (apn1-) yeast. Ape expression in apn1- yeast provided little protection against H2O2 challenges, consistent with the weak 3'-repair diesterase activity of the human enzyme. Ape expression at approximately 2000 molecules per nucleus reduced the spontaneous mutation rate of apn1- yeast to that seen for wild-type cells. Because Ape has a powerful AP endonuclease but weak 3'-diesterase activity, these findings indicate that endogenously generated AP sites can drive spontaneous mutagenesis.
Collapse
Affiliation(s)
- D M Wilson
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
11
|
Kunz BA, Henson ES, Roche H, Ramotar D, Nunoshiba T, Demple B. Specificity of the mutator caused by deletion of the yeast structural gene (APN1) for the major apurinic endonuclease. Proc Natl Acad Sci U S A 1994; 91:8165-9. [PMID: 7520176 PMCID: PMC44566 DOI: 10.1073/pnas.91.17.8165] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The loss of bases from cellular DNA occurs via both spontaneous and mutagen-induced reactions. The resulting apurinic/apyrimidinic (AP) sites are cytotoxic and mutagenic but are counteracted by repair initiated by AP endonucleases. Previously, in vitro and bacterial transfection studies suggested that AP sites often prompt insertion of dAMP residues during replication, the A-rule. Dissimilar results have been obtained by transfecting DNA into eukaryotic cells. It seemed possible that these differences might be due to idiosyncrasies of transfection or aberrant replication of the transecting DNA. The observation that AP endonuclease-deficient strains of the yeast Saccharomyces cerevisiae have elevated spontaneous mutation rates allowed us to determine the mutational specificity of endogenously generated AP sites in nuclear DNA. With the yeast SUP4-o gene as a mutational target, we found that a deficiency in the major yeast AP endonuclease, Apn1, provoked mainly single base-pair substitution; the rate of transposon Ty insertion was also enhanced. The rate of transversion to a G.C pair was increased 10-fold in Apn1-deficient yeast, including a 59-fold increase in the rate of A.T-->C.G events. In contrast, the rate of transversion to an A.T pair was increased by only 3-fold. A deficiency in N3-methyladenine glycosylase offset these substitution rate increases, indicating that they are due primarily to AP sites resulting from glycosylase action. Thus, the A-rule does not seem to apply to the mutagenic processing of endogenous abasic sites in S. cerevisiae. Other results presented here show that AP endonuclease-deficient Escherichia coli exhibit a mutator phenotype consistent with the A-rule.
Collapse
Affiliation(s)
- B A Kunz
- Microbiology Department, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Cellular role of yeast Apn1 apurinic endonuclease/3'-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol 1991. [PMID: 1715020 DOI: 10.1128/mcb.11.9.4537] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The APN1 gene of Saccharomyces cerevisiae encodes the major apurinic/apyrimidinic endonuclease and 3'-repair DNA diesterase in yeast cell extracts. The Apn1 protein is a homolog of Escherichia coli endonuclease IV, which functions in the repair of some oxidative and alkylation damages in that organism. We show here that yeast strains lacking Apn1 (generated by targeted gene disruption or deletion-replacement) are hypersensitive to both oxidative (hydrogen peroxide and t-butylhydroperoxide) and alkylating (methyl- and ethylmethane sulfonate) agents that damage DNA. These cellular hypersensitivities are correlated with the accumulation of unrepaired damages in the chromosomal DNA of apn1 mutant yeast cells. Hydrogen peroxide-treated APN1+ but not apn1 mutant cells regenerate high-molecular-weight DNA efficiently after the treatment. The DNA strand breaks that accumulate in the Apn1-deficient mutant contain lesions that block the action of DNA polymerase but can be removed in vitro by purified Apn1. An analogous result with DNA from methylmethane sulfonate-treated cells corresponded to the accumulation of unrepaired DNA apurinic sites in the apn1 mutant cells. The rate of spontaneous mutation in apn1 mutant S. cerevisiae was 6- to 12-fold higher than that measured for wild-type yeast cells. This increase indicates that under normal growth conditions, the production of DNA damages that are targets for Apn1 is substantial and that such lesions can be mutagenic when left unrepaired.
Collapse
|
13
|
Ramotar D, Popoff SC, Gralla EB, Demple B. Cellular role of yeast Apn1 apurinic endonuclease/3'-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol 1991; 11:4537-44. [PMID: 1715020 PMCID: PMC361329 DOI: 10.1128/mcb.11.9.4537-4544.1991] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The APN1 gene of Saccharomyces cerevisiae encodes the major apurinic/apyrimidinic endonuclease and 3'-repair DNA diesterase in yeast cell extracts. The Apn1 protein is a homolog of Escherichia coli endonuclease IV, which functions in the repair of some oxidative and alkylation damages in that organism. We show here that yeast strains lacking Apn1 (generated by targeted gene disruption or deletion-replacement) are hypersensitive to both oxidative (hydrogen peroxide and t-butylhydroperoxide) and alkylating (methyl- and ethylmethane sulfonate) agents that damage DNA. These cellular hypersensitivities are correlated with the accumulation of unrepaired damages in the chromosomal DNA of apn1 mutant yeast cells. Hydrogen peroxide-treated APN1+ but not apn1 mutant cells regenerate high-molecular-weight DNA efficiently after the treatment. The DNA strand breaks that accumulate in the Apn1-deficient mutant contain lesions that block the action of DNA polymerase but can be removed in vitro by purified Apn1. An analogous result with DNA from methylmethane sulfonate-treated cells corresponded to the accumulation of unrepaired DNA apurinic sites in the apn1 mutant cells. The rate of spontaneous mutation in apn1 mutant S. cerevisiae was 6- to 12-fold higher than that measured for wild-type yeast cells. This increase indicates that under normal growth conditions, the production of DNA damages that are targets for Apn1 is substantial and that such lesions can be mutagenic when left unrepaired.
Collapse
Affiliation(s)
- D Ramotar
- Laboratory of Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
14
|
Koo HS, Claassen L, Grossman L, Liu LF. ATP-dependent partitioning of the DNA template into supercoiled domains by Escherichia coli UvrAB. Proc Natl Acad Sci U S A 1991; 88:1212-6. [PMID: 1847511 PMCID: PMC50987 DOI: 10.1073/pnas.88.4.1212] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The helicase action of the Escherichia coli UvrAB complex on a covalently closed circular DNA template was monitored using bacterial DNA topoisomerase I, which specifically removes negative supercoils. In the presence of E. coli DNA topoisomerase I and ATP, the UvrAB complex gradually introduced positive supercoils into the input relaxed plasmid DNA template. Positive supercoils were not produced when E. coli DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I or when both E. coli and eukaryotic DNA topoisomerases I were added simultaneously. These results suggest that like other DNA helix-tracking processes, the ATP-dependent action of the UvrAB complex on duplex DNA simultaneously generates both positive and negative supercoils, which are not constrained by protein binding but are torsionally strained. The supercoiling activity of UvrAB on UV-damaged DNA was also studied using UV-damaged plasmid DNA and a mutant UvrA protein that lacks the 40 C-terminal amino acids and is defective in preferential binding to UV-damaged DNA. UvrAB was found to preferentially supercoil the UV-damaged DNA template, whereas the mutant protein supercoiled UV-damaged and undamaged DNA with equal efficiency. Our results therefore suggest that the DNA helix-tracking activity of UvrAB may be involved in searching and/or prepriming the damaged DNA for UvrC incision. A possible role of supercoiled domains in the incision process is discussed.
Collapse
Affiliation(s)
- H S Koo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | | | | |
Collapse
|
15
|
Wiebauer K, Jiricny J. Mismatch-specific thymine DNA glycosylase and DNA polymerase beta mediate the correction of G.T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci U S A 1990; 87:5842-5. [PMID: 2116008 PMCID: PMC54424 DOI: 10.1073/pnas.87.15.5842] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To avoid the mutagenic effect of spontaneous hydrolytic deamination of 5-methylcytosine, G.T mispairs, arising in DNA as a result of this process, should always be corrected to G.C pairs. We describe here the identification of a DNA glycosylase activity present in nuclear extracts from HeLa cells, which removes the mispaired thymine to generate an apyrimidinic (AP) site opposite the guanine. We further show, using a specific antibody and inhibitors, that the single nucleotide gap, created upon processing of the AP site, is filled in by DNA polymerase beta. This finding substantiates the proposed role of this enzyme in short-patch DNA repair.
Collapse
Affiliation(s)
- K Wiebauer
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
16
|
Popoff SC, Spira AI, Johnson AW, Demple B. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc Natl Acad Sci U S A 1990; 87:4193-7. [PMID: 1693433 PMCID: PMC54074 DOI: 10.1073/pnas.87.11.4193] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA damage generated by oxygen radicals includes base-free apurinic/apyrimidinic (AP) sites and strand breaks that bear deoxyribose fragments. The yeast Saccharomyces cerevisiae repairs such DNA lesions by using a single major enzyme. We have cloned the yeast structural gene (APN1) encoding this AP endonuclease/3'-repair diesterase by immunological screening of a yeast genomic DNA expression library in lambda gt11. Gene disruption experiments confirm that the Apn1 protein accounts for greater than or equal to 97% of both AP endonuclease and DNA 3'-repair diesterase activities in yeast cell-free extracts. The DNA and predicted amino acid sequences for the APN1 gene are homologous to those for the nfo gene encoding DNA endonuclease IV of Escherichia coli. This conservation of structure between a eukaryotic enzyme and its prokaryotic counterpart underscores the fundamental nature of their roles in DNA repair.
Collapse
Affiliation(s)
- S C Popoff
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
17
|
Abstract
Ultraviolet irradiation of DNA produces cytosine hydrate, released as a free base by E. coli endonuclease III. Cytosine hydrate excision was investigated by assaying photoproduct release from cytosine-radiolabeled, irradiated poly(dG-dC):poly(dG-dC). Conformational shifts between B-DNA and Z-DNA were affected by heating the polymer in either nickel chloride or cobaltous chloride, and were determined by circular dichroism. Rates of enzymic cytosine hydrate release did not differ between the different substrate conformations. Irradiation of left-handed poly(dG-dC):poly(dG-dC) resulted in cytosine hydrate formation. Therefore, neither formation nor enzymic excision of ultraviolet-induced cytosine hydrates are substantially affected by these DNA conformational states.
Collapse
Affiliation(s)
- N J Duker
- Department of Pathology, Temple University School of Medicine, Philadelphia, PA 19140
| | | |
Collapse
|
18
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
19
|
Abstract
Covalently closed circular DNA containing a synthetic analog of an abasic site at a unique position was used as a substrate to study DNA repair. Incubation of this DNA in Xenopus laevis oocyte extracts resulted in rapid cleavage of the DNA at the abasic site by a class II apurinic-apyrimidinic endonuclease, followed by complete repair within 40 min. Nicked circular DNAs persisted for several minutes before repair by an ATP-dependent DNA synthesis reaction. The repair-related DNA synthesis was localized within 3 or 4 nucleotides surrounding the abasic site. These results are consistent with the short-patch repair reported for DNA damage at heterogeneous sites in human cells (J. D. Regan and R. B. Setlow, Cancer Res. 34:3318-3325, 1974).
Collapse
|
20
|
Matsumoto Y, Bogenhagen DF. Repair of a synthetic abasic site in DNA in a Xenopus laevis oocyte extract. Mol Cell Biol 1989; 9:3750-7. [PMID: 2779565 PMCID: PMC362436 DOI: 10.1128/mcb.9.9.3750-3757.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Covalently closed circular DNA containing a synthetic analog of an abasic site at a unique position was used as a substrate to study DNA repair. Incubation of this DNA in Xenopus laevis oocyte extracts resulted in rapid cleavage of the DNA at the abasic site by a class II apurinic-apyrimidinic endonuclease, followed by complete repair within 40 min. Nicked circular DNAs persisted for several minutes before repair by an ATP-dependent DNA synthesis reaction. The repair-related DNA synthesis was localized within 3 or 4 nucleotides surrounding the abasic site. These results are consistent with the short-patch repair reported for DNA damage at heterogeneous sites in human cells (J. D. Regan and R. B. Setlow, Cancer Res. 34:3318-3325, 1974).
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Pharmacological Sciences, State University of New York, Stony Brook 11794
| | | |
Collapse
|
21
|
Orren DK, Sancar A. The (A)BC excinuclease of Escherichia coli has only the UvrB and UvrC subunits in the incision complex. Proc Natl Acad Sci U S A 1989; 86:5237-41. [PMID: 2546148 PMCID: PMC297596 DOI: 10.1073/pnas.86.14.5237] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The uvrA, uvrB, and uvrC genes control excision repair in Escherichia coli. Cells with mutations in any of these three genes cannot repair DNA by nucleotide excision. When the purified gene products--the UvrA, UvrB, and UvrC proteins--are mixed together, an excision nuclease is formed that incises on both sides of the damaged nucleotide in an ATP-dependent reaction; it has been presumed that the excision nuclease was an ABC complex containing all three Uvr proteins. To determine the stoichiometry of the subunits in the enzyme, we conducted hydrodynamic studies with mixtures of the subunits with or without DNA substrate. We found that without DNA the UvrA subunit is a dimer and that when UvrB protein is also present, a (UvrA)2(UvrB)1 complex forms. Without DNA no detectable interaction of either the UvrA or UvrB subunits or the (UvrA)2(UvrB)1 complex with the UvrC subunit occurs. Unexpectedly, with UV-irradiated DNA, the UvrA/UvrB ratio in isolated DNA-protein complexes is variable, and the ratio becomes infinitesimally low as the UvrA concentration in the reaction mixture decreases. Under conditions of saturating UvrB protein approximately one UvrB molecule binds to DNA per damaged site in a reaction that requires catalytic amounts of UvrA subunit. Addition of UvrC protein to purified UvrB-DNA complexes results in rapid incision of the DNA, presumably catalyzed by an excision nuclease containing only UvrB and UvrC subunits.
Collapse
Affiliation(s)
- D K Orren
- University of North Carolina School of Medicine, Department of Biochemistry, Chapel Hill 27599
| | | |
Collapse
|
22
|
O'Connor TR, Laval J. Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. Proc Natl Acad Sci U S A 1989; 86:5222-6. [PMID: 2664776 PMCID: PMC297593 DOI: 10.1073/pnas.86.14.5222] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 2,6-diamino-4-hydroxy-5N-formamidopyrimidine (Fapy)-DNA glycosylase of Escherichia coli, which is coded for by the fpg gene, excises purine bases with ring-opened imidazoles. In addition to the DNA glycosylase activity, we report that the Fapy-DNA glycosylase of E. coli has an associated activity, resistant to EDTA, that nicks DNA at apurinic/apyrimidinic (AP) sites. The levels of Fapy-DNA glycosylase and AP-nicking activity were parallel in crude lysates of E. coli HB101 harboring different plasmids constructed from the fpg gene. The fpg gene is different from the xth, nth, and nfo genes of E. coli, whose gene products also cleave DNA at AP sites. The Fapy-DNA glycosylase was purified to electrophoretic homogeneity. During this purification, the Fapy-DNA glycosylase copurified with an AP-nicking activity using chromatographic separations based on ion-exchange, molecular weight exclusion, and hydrophobicity. The cleavage at AP sites by the Fapy-DNA glycosylase left a 5'-phosphomonoester nucleotide at one terminus. In addition, DNA containing reduced AP sites was not nicked by the Fapy-DNA glycosylase. These data suggest that the mechanism of cleavage involved beta elimination. Therefore, this activity of the Fapy-DNA glycosylase nicking DNA at AP sites should be referred to as an AP lyase. The 3' terminus did not prime nick-translation by E. coli DNA polymerase I. However, the 3' terminus becomes a substrate for nick-translation if first allowed to react with calf intestine phosphatase or the E. coli exonuclease III. These data suggest that the repair of the Fapy lesion at least to some extent results in the formation of both 5'- and 3'-phosphomonoester nucleotides and the release of the deoxyribose.
Collapse
Affiliation(s)
- T R O'Connor
- Unité de Recherche Associee 158, Centre National de la Recherche Scientifique, Institut Gustave-Roussy, Villejuif, France
| | | |
Collapse
|
23
|
Vesnaver G, Chang CN, Eisenberg M, Grollman AP, Breslauer KJ. Influence of abasic and anucleosidic sites on the stability, conformation, and melting behavior of a DNA duplex: correlations of thermodynamic and structural data. Proc Natl Acad Sci U S A 1989; 86:3614-8. [PMID: 2726738 PMCID: PMC287188 DOI: 10.1073/pnas.86.10.3614] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report a complete thermodynamic characterization of the impact of abasic and anucleosidic lesions on the stability, conformation, and melting behavior of a DNA duplex. The requisite thermodynamic data were obtained by using a combination of spectroscopic and calorimetric techniques to investigate helix-to-coil transitions in a family of DNA duplexes of the form d(CGCATGAGTACGC).d(GCGTACXCATGCG), where X corresponds to a thymidine residue in the parent Watson-Crick duplex and to an abasic or anucleosidic site in the modified duplexes. The data derived from these studies reveal that incorporation of an abasic site into a DNA duplex dramatically reduces the duplex stability, transition enthalpy, and transition entropy. The magnitudes of these lesion-induced effects are greater than one would expect based on simple nearest-neighbor considerations. Nearly identical thermodynamic data are obtained when the modified duplex contains an anucleosidic site rather than an abasic site. This observation suggests that the thermodynamic impact of these lesions primarily results from removal of the base rather than the sugar ring. Significantly, the melting cooperativities of the abasic and anucleosidic derivatives are identical with each other and with the corresponding unmodified Watson-Crick parent duplex. This result suggests that the phosphodiester backbone, rather than the base-sugar network, serves as the primary propagation path for the communication of cooperative melting effects. We propose molecular interpretations for the thermodynamic data based on the structural picture that has emerged from the NMR studies of Patel and coworkers on the same family of modified and unmodified DNA duplexes [Kalnik, M.W., Chang, C.-N., Grollman, A.P. & Patel, D.J. (1988) Biochemistry 27, 924-931].
Collapse
Affiliation(s)
- G Vesnaver
- Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick 08903
| | | | | | | | | |
Collapse
|
24
|
|