1
|
Arai S, Suzuki H. Immobilization of E. coli expressing γ-glutamyltranspeptidase on its surface for γ-glutamyl compound production. AMB Express 2023; 13:27. [PMID: 36869971 PMCID: PMC9985530 DOI: 10.1186/s13568-023-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
An Escherichia coli strain expressing γ-glutamyltranspeptidase on its extracellular surface using the Met1 to Arg232 fragment of YiaT of E. coli as an anchor protein was immobilized with alginate for repeated use. Measurement of γ-glutamyltranspeptidase activity of the immobilized cells was performed repeatedly at pH 8.73 and 37 °C for 10 days using γ-glutamyl-p-nitroanilide in the presence of 100 mM CaCl2 and 3% NaCl with and without glycylglycine. Even after the 10th day, the enzyme activity did not decrease from the initial levels. The production of γ-glutamylglutamine from glutamine using the immobilized cells was performed repeatedly at pH 10.5 and 37 °C for 10 days in the presence of 250 mM glutamine, 100 mM CaCl2, and 3% NaCl. Sixty-four % of glutamine was converted to γ-glutamylglutamine in the first cycle. While repeating the production 10 times, the surface of the beads gradually became covered with white precipitate, and the conversion efficiency gradually decreased, but 72% of the initial value still remained even at the 10th measurement.
Collapse
Affiliation(s)
- Shintaro Arai
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
2
|
Takakura Y, Arai S, Kanaori K, Suzuki H. Development of Enzymatic Synthesis of γ-Glutamylcarnosine and Its Effects on Taste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:592-597. [PMID: 34981936 DOI: 10.1021/acs.jafc.1c06965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
γ-Glutamyl peptides have amide bonds between the γ-carboxy group of glutamic acid and the amino group of amino acids or peptides. Some of these γ-glutamyl peptides are known as kokumi substances. Kokumi substances enhance the taste, mouthfulness, thickness, and continuity of the dish. γ-Glutamylcarnosine (γ-l-glutamyl-β-alanyl-l-histidine) is a γ-glutamyl peptide, and this peptide has been suggested as a kokumi substance; however, its effects on taste have not been evaluated directly. As γ-glutamylcarnosine is not available commercially, the conditions for its enzymatic synthesis using a γ-glutamyltranspeptidation reaction of γ-glutamyltranspeptidase of Escherichia coli was optimized. The synthesized peptide was purified with a Dowex 1 × 8 column, and its structure was identified by mass spectrometry and NMR spectroscopy. This is the first report of the enzymatic synthesis of γ-glutamylcarnosine. Using this purified preparation, its effects on the sense of taste were investigated. However, the effects of γ-glutamylcarnosine on the sense of taste were not detected except for increased bitterness.
Collapse
|
3
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
4
|
Oliva F, Flores-Canales JC, Pieraccini S, Morelli CF, Sironi M, Schiøtt B. Simulating Multiple Substrate-Binding Events by γ-Glutamyltransferase Using Accelerated Molecular Dynamics. J Phys Chem B 2020; 124:10104-10116. [PMID: 33112625 DOI: 10.1021/acs.jpcb.0c06907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
γ-Glutamyltransferase (GGT) is an enzyme that uses γ-glutamyl compounds as substrates and catalyzes their transfer to a water molecule or an acceptor substrate with varied physiological function in bacteria, plants, and animals. Crystal structures of GGT are known for different species and in different states of the chemical reaction; however, the structural dynamics of the substrate binding to the catalytic site of GGT are unknown. Here, we modeled Escherichia coli GGT's glutamine binding by using a swarm of accelerated molecular dynamics (aMD) simulations. Characterization of multiple binding events identified three structural binding motifs composed of polar residues in the binding pocket that govern glutamine binding into the active site. Simulated open and closed conformations of a lid-loop protecting the binding cavity suggest its role as a gating element by allowing or blocking substrates entry into the binding pocket. Partially open states of the lid-loop are accessible within thermal fluctuations, while the estimated free energy cost of a complete open state is 2.4 kcal/mol. Our results suggest that both specific electrostatic interactions and GGT conformational dynamics dictate the molecular recognition of substrate-GGT complexes.
Collapse
Affiliation(s)
- Francesco Oliva
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Jose C Flores-Canales
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Stefano Pieraccini
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Carlo F Morelli
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Maurizio Sironi
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Philips JG, Dumin W, Winefield C. Functional Characterization of the Grapevine γ-Glutamyl Transferase/Transpeptidase (E.C. 2.3.2.2) Gene Family Reveals a Single Functional Gene Whose Encoded Protein Product Is Not Located in Either the Vacuole or Apoplast. FRONTIERS IN PLANT SCIENCE 2019; 10:1402. [PMID: 31749820 PMCID: PMC6843540 DOI: 10.3389/fpls.2019.01402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 06/08/2023]
Abstract
γ-glutamyl transferases/transpeptidases (E.C. 2.3.2.2, GGTs) are involved in the catabolism of many compounds that are conjugated to glutathione (GSH), which have a variety of roles. GSH can act as storage and transport vehicle for reduced sulfur; it is involved in the detoxification of xenobiotics and also acts as a redox buffer by utilizing its thiol residue to protect against reactive oxygen species, which accumulate in response to biotic and abiotic stress. Furthermore, many distinctive flavor and aroma compounds in Sauvignon blanc wines originate from odorless C5- and C6-GSH conjugates or their GGT catabolized derivatives. These precursors are then processed into their volatile forms by yeast during fermentation. In many plant species, two or more isoforms of GGTs exist that target GSH-conjugates to either the apoplast or the vacuole. A bioinformatics approach identified multiple GGT candidates in grapevine (Vitis vinifera). However, only a single candidate, VvGGT3, has all the conserved residues needed for GGT activity. This is intriguing given the variety of roles of GSH and GGTs in plant cells. Characterization of VvGGT3 from cv. Sauvignon blanc was then undertaken. The VvGGT3 transcript is present in roots, leaves, inflorescences, and tendril and at equal abundance in the skin, pulp, and seed of mature berries and shows steady accumulation over the course of whole berry development. In addition, the VvGGT3 transcript in whole berries is upregulated upon Botrytis cinerea infection as well as mechanical damage to leaf tissue. VvGGT3-GFP fusion proteins transiently over-expressed in onion cells were used to study subcellular localization. To confirm VvGGT3 activity and localization in vivo, the fluorescent γ-glutamyl-7-amido-4-methylcoumarin substrate was added to Nicotiana benthamiana leaves transiently over-expressing VvGGT3. In combination, these results suggest that the functional VvGGT3 is associated with membrane-like structures. This is not consistent with its closely related functionally characterized GGTs from Arabidopsis, radish and garlic.
Collapse
Affiliation(s)
| | | | - Christopher Winefield
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
6
|
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants (Basel) 2018; 7:E62. [PMID: 29702624 PMCID: PMC5981248 DOI: 10.3390/antiox7050062] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Which scientist has never heard of glutathione (GSH)? This well-known low-molecular-weight tripeptide is perhaps the most famous natural antioxidant. However, the interest in GSH should not be restricted to its redox properties. This multidisciplinary review aims to bring out some lesser-known aspects of GSH, for example, as an emerging tool in nanotechnologies to achieve targeted drug delivery. After recalling the biochemistry of GSH, including its metabolism pathways and redox properties, its involvement in cellular redox homeostasis and signaling is described. Analytical methods for the dosage and localization of GSH or glutathiolated proteins are also covered. Finally, the various therapeutic strategies to replenish GSH stocks are discussed, in parallel with its use as an addressing molecule in drug delivery.
Collapse
Affiliation(s)
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | | | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | - Pierre Leroy
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | | |
Collapse
|
7
|
Moriwaki S, Into T, Suzuki K, Miyauchi M, Takata T, Shibayama K, Niida S. γ-Glutamyltranspeptidase is an endogenous activator of Toll-like receptor 4-mediated osteoclastogenesis. Sci Rep 2016; 6:35930. [PMID: 27775020 PMCID: PMC5075938 DOI: 10.1038/srep35930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation-associated bone destruction, which is observed in rheumatoid arthritis (RA) and periodontitis, is mediated by excessive osteoclastogenesis. We showed previously that γ-glutamyltranspeptidase (GGT), an enzyme involved in glutathione metabolism, acts as an endogenous activator of such pathological osteoclastogenesis, independent of its enzymatic activity. GGT accumulation is clinically observed in the joints of RA patients, and, in animals, the administration of recombinant GGT to the gingival sulcus as an in vivo periodontitis model induces an increase in the number of osteoclasts. However, the underlying mechanisms of this process remain unclear. Here, we report that Toll-like receptor 4 (TLR4) recognizes GGT to activate inflammation-associated osteoclastogenesis. Unlike lipopolysaccharide, GGT is sensitive to proteinase K treatment and insensitive to polymyxin B treatment. TLR4 deficiency abrogates GGT-induced osteoclastogenesis and activation of NF-κB and MAPK signaling in precursor cells. Additionally, GGT does not induce osteoclastogenesis in cells lacking the signaling adaptor MyD88. The administration of GGT to the gingival sulcus induces increased osteoclastogenesis in wild-type mice, but does not induce it in TLR4-deficient mice. Our findings elucidate a novel mechanism of inflammation-associated osteoclastogenesis, which involves TLR4 recognition of GGT and subsequent activation of MyD88-dependent signaling.
Collapse
Affiliation(s)
- Sawako Moriwaki
- Biobank, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho 501-0296, Japan
| | - Keiko Suzuki
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo 142-8555, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathology, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8522, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathology, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8522, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shumpei Niida
- Biobank, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| |
Collapse
|
8
|
Choi HS, Kim KJ, Rhee Y, Lim SK. Serum γ-Glutamyl Transferase Is Inversely Associated with Bone Mineral Density Independently of Alcohol Consumption. Endocrinol Metab (Seoul) 2016; 31:64-71. [PMID: 26676328 PMCID: PMC4803563 DOI: 10.3803/enm.2016.31.1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/07/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND γ-Glutamyl transferase (GGT) is a well-known marker of chronic alcohol consumption or hepatobiliary diseases. A number of studies have demonstrated that serum levels of GGT are independently associated with cardiovascular and metabolic disorders. The purpose of this study was to test if serum GGT levels are associated with bone mineral density (BMD) in Korean adults. METHODS A total of 462 subjects (289 men and 173 women), who visited Severance Hospital for medical checkup, were included in this study. BMD was measured using dual energy X-ray absorptiometry. Cross-sectional association between serum GGT and BMD was evaluated. RESULTS As serum GGT levels increased from the lowest tertile (tertile 1) to the highest tertile (tertile 3), BMD decreased after adjusting for confounders such as age, body mass index, amount of alcohol consumed, smoking, regular exercise, postmenopausal state (in women), hypertension, diabetes mellitus, and hypercholesterolemia. A multiple linear regression analysis showed a negative association between log-transformed serum GGT levels and BMD. In a multiple logistic regression analysis, tertile 3 of serum GGT level was associated with an increased risk for low bone mass compared to tertile 1 (odds ratio, 2.271; 95% confidence interval, 1.340 to 3.850; P=0.002). CONCLUSION Serum GGT level was inversely associated with BMD in Korean adults. Further study is necessary to fully elucidate the mechanism of the inverse relationship.
Collapse
Affiliation(s)
- Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Kwang Joon Kim
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Severance Check-up, Severance Hospital, Yonsei University Health System, Seoul, Korea
- Severance Executive Healthcare Clinic, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Yumie Rhee
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Kil Lim
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Sikalidis AK, Mazor KM, Lee JI, Roman HB, Hirschberger LL, Stipanuk MH. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits. Amino Acids 2014; 46:1285-96. [PMID: 24557597 DOI: 10.1007/s00726-014-1687-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser(51) phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent.
Collapse
Affiliation(s)
- Angelos K Sikalidis
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ida T, Suzuki H, Fukuyama K, Hiratake J, Wada K. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:607-14. [PMID: 24531494 PMCID: PMC3940202 DOI: 10.1107/s1399004713031222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 12/23/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp2 hybridization to Thr403 Oγ, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.
Collapse
Affiliation(s)
- Tomoyo Ida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hideyuki Suzuki
- Division of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
11
|
West MB, Chen Y, Wickham S, Heroux A, Cahill K, Hanigan MH, Mooers BHM. Novel insights into eukaryotic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme. J Biol Chem 2013; 288:31902-13. [PMID: 24047895 DOI: 10.1074/jbc.m113.498139] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The enzyme γ-glutamyltranspeptidase 1 (GGT1) is a conserved member of the N-terminal nucleophile hydrolase family that cleaves the γ-glutamyl bond of glutathione and other γ-glutamyl compounds. In animals, GGT1 is expressed on the surface of the cell and has critical roles in maintaining cysteine levels in the body and regulating intracellular redox status. Expression of GGT1 has been implicated as a potentiator of asthma, cardiovascular disease, and cancer. The rational design of effective inhibitors of human GGT1 (hGGT1) has been delayed by the lack of a reliable structural model. The available crystal structures of several bacterial GGTs have been of limited use due to differences in the catalytic behavior of bacterial and mammalian GGTs. We report the high resolution (1.67 Å) crystal structure of glutamate-bound hGGT1, the first of any eukaryotic GGT. Comparisons of the active site architecture of hGGT1 with those of its bacterial orthologs highlight key differences in the residues responsible for substrate binding, including a bimodal switch in the orientation of the catalytic nucleophile (Thr-381) that is unique to the human enzyme. Compared with several bacterial counterparts, the lid loop in the crystal structure of hGGT1 adopts an open conformation that allows greater access to the active site. The hGGT1 structure also revealed tightly bound chlorides near the catalytic residue that may contribute to catalytic activity. These are absent in the bacterial GGTs. These differences between bacterial and mammalian GGTs and the new structural data will accelerate the development of new therapies for GGT1-dependent diseases.
Collapse
|
12
|
Ikeda Y, Taniguchi N. γ-Glutamyl Transpeptidase Activity Assay. CURRENT PROTOCOLS IN TOXICOLOGY 2013; Chapter 6:Unit6.6. [PMID: 23045058 DOI: 10.1002/0471140856.tx0606s05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gamma-glutamyl transpeptidase catalyzes the transfer of a gamma-glutamyl bond and is of importance in glutathione metabolism. The most common assay methods for this enzyme, in which gamma-glutamyl derivatives of p-nitroaniline are used as a gamma-glutamyl donor, are described in this unit.
Collapse
Affiliation(s)
- Y Ikeda
- Osaka University Medical School, Osaka, Japan
| | | |
Collapse
|
13
|
Law SHW, Redelings BD, Kullman SW. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:35-49. [PMID: 21898790 DOI: 10.1002/jez.b.21439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 11/07/2022]
Abstract
The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species.
Collapse
Affiliation(s)
- Sheran Hiu Wan Law
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
14
|
Taniguchi N. From the gamma-glutamyl cycle to the glycan cycle: a road with many turns and pleasant surprises. J Biol Chem 2009; 284:34469-78. [PMID: 19840938 PMCID: PMC2787308 DOI: 10.1074/jbc.x109.023150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Naoyuki Taniguchi
- Department of Disease Glycomics, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan.
| |
Collapse
|
15
|
Zhang H, Forman HJ. Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol 2009; 41:509-15. [PMID: 19684307 DOI: 10.1165/rcmb.2009-0169tr] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
gamma-Glutamyl transpeptidase (GGT) catalyzes the transfer of the glutamyl moiety from glutathione, and glutathione S-conjugates to acceptors to form another amide or to water to produce free glutamate. Functionally, GGT plays important roles in glutathione homeostasis and mercapturic acid metabolism. The expression of GGT is increased as an adaptive response upon the exposure of oxidative stress. The underlying mechanism of this, however, is nebulous, as GGT gene structure is complex and its transcription is usually controlled by multiple promoters that generate several subtypes of GGT mRNAs. Studies reveal that signaling pathways such as Ras, ERK, p38MAPK, and PI3K are involved in the induction of GGT gene expression in response to oxidative stress. Thus, not surprisingly, induction of GGT mRNA subtypes and the involvement of multiple signaling pathways vary depending on cell type and stimuli.
Collapse
Affiliation(s)
- Hongqiao Zhang
- School of Natural Sciences, University of California, Merced, Merced, CA 95340, USA
| | | |
Collapse
|
16
|
Improvement of the glutaryl-7-aminocephalosporanic acid acylase activity of a bacterial gamma-glutamyltranspeptidase. Appl Environ Microbiol 2008; 74:3400-9. [PMID: 18390671 DOI: 10.1128/aem.02693-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.
Collapse
|
17
|
Wang JS, Tan N, Dhawan A. Significance of low or normal serum gamma glutamyl transferase level in infants with idiopathic neonatal hepatitis. Eur J Pediatr 2006; 165:795-801. [PMID: 16770572 DOI: 10.1007/s00431-006-0175-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 05/02/2006] [Indexed: 02/02/2023]
Abstract
INTRODUCTION We evaluated the significance of low/normal serum gamma glutamyl transferase (GGT) level in infants with idiopathic neonatal hepatitis (INH). MATERIALS AND METHODS A retrospective review of the hospital records of 103 infants less than 3 months of age who were diagnosed with INH between August 1991 and November 2000 was performed. Variables including age at which jaundice was noticed, age at presentation, perinatal risk factors, family history of liver disease, parental consanguinity, initial ultrasound scan, liver biopsy, laboratory values at the first visit, the peak levels of total bilirubin, aspartate aminotransferase (AST), GGT and alkaline phosphatase (ALP) in the first 3 months of follow-up and interval for normalisation of serum bilirubin and AST were compared between infants presenting with low/normal GGT (<or=100 U/L) and raised GGT (>100 U/L). RESULTS AND DISCUSSION Infants with low/normal GGT levels presented earlier (median 36.5 days versus 44 days; p=0.016) and had significantly higher bilirubin and AST levels at presentation (bilirubin 167.5 micromol/L versus 133 micromol/L; p<0.005 and AST 187.5 U/L versus 106 U/L; p<0.001) and at peak levels (bilirubin 170 micromol/L versus 146 micromol/L; p=0.024 and AST 210.5 U/L versus 129 U/L; p=0.001). A significant correlation was also found between GGT levels and serum albumin levels (p=0.004). Patients with low/normal GGT levels were more likely to have giant cell hepatitis on histology (p=0.015). There was no difference in time taken to recovery. CONCLUSION Low/normal levels of GGT in INH infants may be a predictor of more severe but recoverable disease.
Collapse
Affiliation(s)
- Jian She Wang
- Paediatric Liver Centre, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | | | | |
Collapse
|
18
|
Nakano Y, Okawa S, Yamauchi T, Koizumi Y, Sekiya J. Purification and properties of soluble and bound gamma-glutamyltransferases from radish cotyledon. Biosci Biotechnol Biochem 2006; 70:369-76. [PMID: 16495652 DOI: 10.1271/bbb.70.369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Soluble and cell wall bound gamma-glutamyltransferases (GGTs) were purified from radish (Raphanus sativus L.) cotyledons. Soluble GGTs (GGT I and II) had the same M(r) of 63,000, and were composed of a heavy subunit (M(r), 42,000) and a light one (M(r), 21,000). The properties of GGT I and II were similar. Bound GGTs (GGT A and B) were purified to homogeneity from the pellet after the extraction of soluble GGTs. GGT A and B were monomeric proteins with an M(r) of 61,000. The properties of GGT A and B were similar. Thus, bound GGTs were distinguished from soluble GGTs. The optimal pHs of soluble and bound GGTs were about 7.5. Both soluble and bound GGTs utilized glutathione, gamma-L-glutamyl-p-nitroanilide, oxidized glutathione and the conjugate of glutathione with monobromobimane as substrates, and were inhibited by acivicin, but soluble GGTs were also distinguished from bound GGTs with regard to these properties.
Collapse
Affiliation(s)
- Yoshihiro Nakano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
19
|
Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K. Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci U S A 2006; 103:6471-6. [PMID: 16618936 PMCID: PMC1458908 DOI: 10.1073/pnas.0511020103] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gamma-glutamyltranspeptidase (GGT) is a heterodimic enzyme that is generated from the precursor protein through posttranslational processing and catalyzes the hydrolysis of gamma-glutamyl bonds in gamma-glutamyl compounds such as glutathione and/or the transfer of the gamma-glutamyl group to other amino acids and peptides. We have determined the crystal structure of GGT from Escherichia coli K-12 at 1.95 A resolution. GGT has a stacked alphabetabetaalpha fold comprising the large and small subunits, similar to the folds seen in members of the N-terminal nucleophile hydrolase superfamily. The active site Thr-391, the N-terminal residue of the small subunit, is located in the groove, from which the pocket for gamma-glutamyl moiety binding follows. We have further determined the structure of the gamma-glutamyl-enzyme intermediate trapped by flash cooling the GGT crystal soaked in glutathione solution and the structure of GGT in complex with l-glutamate. These structures revealed how the gamma-glutamyl moiety and l-glutamate are recognized by the enzyme. A water molecule was seen on the carbonyl carbon of the gamma-glutamyl-Thr-391 Ogamma bond in the intermediate that is to be hydrolyzed. Notably the residues essential for GGT activity (Arg-114, Asp-433, Ser-462, and Ser-463 in E. coli GGT) shown by site-directed mutagenesis of human GGT are all involved in the binding of the gamma-glutamyl moiety. The structure of E. coli GGT presented here, together with sequence alignment of GGTs, may be applicable to interpret the biochemical and genetic data of other GGTs.
Collapse
Affiliation(s)
- Toshihiro Okada
- *Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biosciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; and
| | - Kei Wada
- *Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hidehiko Kumagai
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-cho, Ishikawa 921-8836, Japan
| | - Keiichi Fukuyama
- *Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Abstract
Integrins are cell surface transmembrane glycoproteins that function as adhesion receptors in cell-ECM interactions and link matrix proteins to the cytoskeleton. Integrins play an important role in cytoskeleton organization and in the transduction of intracellular signals, regulating various processes such as proliferation, differentiation, apoptosis, and cell migration. Although integrin-mediated adhesion is based on the binding of alpha and beta subunits to a defined peptide sequence, the strength of this binding is modulated by various factors including the status of glycosylation of integrin. Glycosylation reactions are catalyzed by the catalytic action of glycosyltransferases, such as N-acetylglucosaminyltransferase III, V and alpha1, 6 fucosyltransferase, etc., which catalyze the formation of glycosidic bonds. This review summarizes effects of the posttranslational modification of N-glycans of alpha3beta1 and alpha5beta1 integrins on their association, activation and biological functions, by using biochemical and genetic approaches.
Collapse
Affiliation(s)
- Jianguo Gu
- Department of Biochemistry, Osaka University Graduate School of Medicine, B1, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
21
|
Suzuki H, Miwa C, Ishihara S, Kumagai H. A single amino acid substitution converts gamma-glutamyltranspeptidase to a class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase). Appl Environ Microbiol 2004; 70:6324-8. [PMID: 15466585 PMCID: PMC522061 DOI: 10.1128/aem.70.10.6324-6328.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aspartyl residue at position 433 of gamma-glutamyltranspeptidase of Escherichia coli K-12 was replaced by an asparaginyl residue. This substitution enabled gamma-glutamyltranspeptidase to deacylate glutaryl-7-aminocephalosporanic acid, producing 7-aminocephalosporanic acid, which is a starting material for the synthesis of semisynthetic cephalosporins.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
22
|
Østergaard H, Tachibana C, Winther JR. Monitoring disulfide bond formation in the eukaryotic cytosol. ACTA ACUST UNITED AC 2004; 166:337-45. [PMID: 15277542 PMCID: PMC2172265 DOI: 10.1083/jcb.200402120] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green fluorescent protein–based redox probe termed redox sensitive YFP (rxYFP). Using yeast with genetically manipulated GSSG levels, we find that rxYFP equilibrates with the cytosolic glutathione redox buffer. Furthermore, in vivo and in vitro data show the equilibration to be catalyzed by glutaredoxins and that conditions of high intracellular GSSG confer to these a new role as dithiol oxidases. For the first time a genetically encoded probe is used to determine the redox potential specifically of cytosolic glutathione. We find it to be −289 mV, indicating that the glutathione redox status is highly reducing and corresponds to a cytosolic GSSG level in the low micromolar range. Even under these conditions a significant fraction of rxYFP is oxidized.
Collapse
Affiliation(s)
- Henrik Østergaard
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | |
Collapse
|
23
|
Ikeda K. Osteoporosis: from pathogenesis to therapy. Nihon Ronen Igakkai Zasshi 2003; 40:575-7. [PMID: 14689842 DOI: 10.3143/geriatrics.40.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Wagner G, Stettmaier K, Bors W, Sies H, Wagner EM, Reuter A, Weiher H. Enhanced gamma-glutamyl transpeptidase expression and superoxide production in Mpv17-/- glomerulosclerosis mice. Biol Chem 2001; 382:1019-25. [PMID: 11530932 DOI: 10.1515/bc.2001.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, gamma-glutamyl transpeptidase, which initiates cleavage of extracellular glutathione, has been shown to promote oxidative damage to cells. Here we examined a murine disease model of glomerulosclerosis, involving loss of the Mpv17 gene coding for a peroxisomal protein. In Mpv17-/- cells, enzyme activity and mRNA expression (examined by quantitative RT-PCR) of membrane-bound gamma-glutamyl transpeptidase were increased, while plasma glutathione peroxidase and superoxide dismutase levels were lowered. Superoxide anion production in these cells was increased as documented by electron spin resonance spectroscopy. In the presence of Mn(III)tetrakis(4-benzoic acid)porphyrin, the activities of gamma-glutamyl transpeptidase and plasma glutathione peroxidase were unchanged, suggesting a relationship between enzyme expression and the amount of reactive oxygen species. Inhibition of gamma-glutamyl transpeptidase by acivicin reverted the lowered plasma glutathione peroxidase and superoxide dismutase activities, indicating reciprocal control of gene expression for these enzymes.
Collapse
MESH Headings
- Animals
- Catalase/biosynthesis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- Glomerulosclerosis, Focal Segmental/enzymology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glutathione/biosynthesis
- Glutathione Peroxidase/biosynthesis
- Glutathione Reductase/biosynthesis
- Kidney/enzymology
- Kidney/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxide Dismutase/biosynthesis
- Superoxides/metabolism
- gamma-Glutamyltransferase/biosynthesis
Collapse
Affiliation(s)
- G Wagner
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Glutathione (GSH) is the major cellular thiol participating in cellular redox reactions and thioether formation. This article serves as introduction to the FRBM Forum on glutathione and emphasizes cellular functions: What is GSH? Where does it come from? Where does it go? What does it do? What is new and noteworthy? Research tools, historical remarks, and links to current trends.
Collapse
Affiliation(s)
- H Sies
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany.
| |
Collapse
|