1
|
Pios SV, Gelin MF, Luis Vasquez, Hauer J, Chen L. On-the-Fly Simulation of Two-Dimensional Fluorescence-Excitation Spectra. J Phys Chem Lett 2024; 15:8728-8735. [PMID: 39162319 DOI: 10.1021/acs.jpclett.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Two-dimensional (2D) fluorescence-excitation (2D-FLEX) spectroscopy is a recently proposed nonlinear femtosecond technique for the detection of photoinduced dynamics. The method records a time-resolved fluorescence signal in its excitation- and detection-frequency dependence and hence combines the exclusive detection of excited state dynamics (fluorescence) with signals resolved in both excitation and emission frequencies (2D electronic spectroscopy). In this work, we develop an on-the-fly protocol for the simulation of 2D-FLEX spectra of molecular systems, which is based on interfacing the classical doorway-window representation of spectroscopic responses with trajectory surface hopping simulations. Applying this methodology to gas-phase pyrazine, we show that femtosecond 2D-FLEX spectra can deliver detailed information that is otherwise obtainable via attosecond spectroscopy.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | |
Collapse
|
2
|
Xu C, Lin C, Peng J, Zhang J, Lin S, Gu FL, Gelin MF, Lan Z. On-the-fly simulation of time-resolved fluorescence spectra and anisotropy. J Chem Phys 2024; 160:104109. [PMID: 38477337 DOI: 10.1063/5.0201204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Congru Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiawei Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Juanjuan Zhang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shichen Lin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhenggang Lan
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
3
|
Yang J, Gelin MF, Chen L, Šanda F, Thyrhaug E, Hauer J. Two-dimensional fluorescence excitation spectroscopy: A novel technique for monitoring excited-state photophysics of molecular species with high time and frequency resolution. J Chem Phys 2023; 159:074201. [PMID: 37581414 DOI: 10.1063/5.0156297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.
Collapse
Affiliation(s)
- Jianmin Yang
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
4
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
5
|
Gelin MF, Borrelli R. Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna-Matthews-Olson Complex. J Chem Theory Comput 2021; 17:4316-4331. [PMID: 34076412 DOI: 10.1021/acs.jctc.1c00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
6
|
Sun K, Xie W, Chen L, Domcke W, Gelin MF. Multi-faceted spectroscopic mapping of ultrafast nonadiabatic dynamics near conical intersections: A computational study. J Chem Phys 2020; 153:174111. [DOI: 10.1063/5.0024148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, 38 Nöethnitzer Str., Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
7
|
Chen L, Gelin MF, Zhao Y, Domcke W. Mapping of Wave Packet Dynamics at Conical Intersections by Time- and Frequency-Resolved Fluorescence Spectroscopy: A Computational Study. J Phys Chem Lett 2019; 10:5873-5880. [PMID: 31518141 DOI: 10.1021/acs.jpclett.9b02208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monitoring of wave packet dynamics at conical intersections by time- and frequency-resolved fluorescence spectroscopy has been investigated theoretically for a three-state two-mode model of a conical intersection coupled to a dissipative environment. The ideal and the actually measurable time- and frequency-gated fluorescence spectra are accurately and efficiently simulated by combining the hierarchy equations-of-motion method for dissipative quantum dynamics with the methodology of the equation-of-motion phase-matching approach for the calculation of spectroscopic signals. It is shown that time- and frequency-resolved fluorescence spectra reveal essential aspects of the wave packet dynamics at conical intersections and the effects of environment-induced dissipation. The results of the present work indicate that fluorescence up-conversion spectroscopy with femtosecond time resolution is an efficient tool for the characterization of ultrafast dynamics at conical intersections.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| | - Maxim F Gelin
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| | - Yang Zhao
- Division of Materials Science , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Wolfgang Domcke
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| |
Collapse
|
8
|
Palacino-González E, Gelin MF, Domcke W. Analysis of transient-absorption pump-probe signals of nonadiabatic dissipative systems: “Ideal” and “real” spectra. J Chem Phys 2019; 150:204102. [DOI: 10.1063/1.5094485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
9
|
Picconi D, Cina JA, Burghardt I. Quantum dynamics and spectroscopy of dihalogens in solid matrices. II. Theoretical aspects and G-MCTDH simulations of time-resolved coherent Raman spectra of Schrödinger cat states of the embedded I 2Kr 18 cluster. J Chem Phys 2019; 150:064112. [PMID: 30769994 DOI: 10.1063/1.5082651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study presents quantum dynamical simulations, using the Gaussian-based multiconfigurational time-dependent Hartree (G-MCTDH) method, of time-resolved coherent Raman four-wave-mixing spectroscopic experiments for the iodine molecule embedded in a cryogenic crystal krypton matrix [D. Picconi et al., J. Chem. Phys. 150, 064111 (2019)]. These experiments monitor the time-evolving vibrational coherence between two wave packets created in a quantum superposition (i.e., a "Schrödinger cat state") by a pair of pump pulses which induce electronic B Πu30+⟵XΣg+1 transitions. A theoretical description of the spectroscopic measurement is developed, which elucidates the connection between the nonlinear signals and the wave packet coherence. The analysis provides an effective means to simulate the spectra for several different optical conditions with a minimum number of quantum dynamical propagations. The G-MCTDH method is used to calculate and interpret the time-resolved coherent Raman spectra of two selected initial superpositions for a I2Kr18 cluster embedded in a frozen Kr cage. The time- and frequency-dependent signals carry information about the molecular mechanisms of dissipation and decoherence, which involve vibrational energy transfer to the stretching mode of the four "belt" Kr atoms. The details of these processes and the number of active solvent modes depend in a non-trivial way on the specific initial superposition.
Collapse
Affiliation(s)
- David Picconi
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Jeffrey A Cina
- Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Yuen-Zhou J, Krich JJ, Aspuru-Guzik A. A witness for coherent electronic vs vibronic-only oscillations in ultrafast spectroscopy. J Chem Phys 2012; 136:234501. [DOI: 10.1063/1.4725498] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
|
12
|
|