1
|
Bloom JC, Schimenti JC. Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev 2020; 34:1637-1649. [PMID: 33184219 PMCID: PMC7706705 DOI: 10.1101/gad.341602.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
In this study, Bloom and Schimenti examine the response of primordial germ cells to DNA damage. Using both environmental and genetic stresses, the authors reveal the importance of the G1 checkpoint in preventing accumulation of complex mutations in the germline, and the differentiation of the DNA damage response during germ cell development. Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm−/−) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.
Collapse
Affiliation(s)
- Jordana C Bloom
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2
|
Esseltine JL, Brooks CR, Edwards NA, Subasri M, Sampson J, Séguin C, Betts DH, Laird DW. Dynamic regulation of connexins in stem cell pluripotency. Stem Cells 2019; 38:52-66. [DOI: 10.1002/stem.3092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/18/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jessica L. Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
- Division of BioMedical Sciences, Faculty of Medicine; Memorial University of Newfoundland; St. John's Newfoundland and Labrador Canada
| | - Courtney R. Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Nicole A. Edwards
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Mathushan Subasri
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Jacinda Sampson
- Department of Neurology; Stanford University Medical Center; Palo Alto California
| | - Cheryle Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Dean H. Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario Canada
| |
Collapse
|
3
|
Mnatsakanyan H, Sabater I Serra R, Salmeron-Sanchez M, Rico P. Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Front Cell Dev Biol 2019; 7:180. [PMID: 31544103 PMCID: PMC6728745 DOI: 10.3389/fcell.2019.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells (ESCs) possess remarkable abilities, as they can differentiate into all cell types (pluripotency) and be self-renewing, giving rise to two identical cells. These characteristics make ESCs a powerful research tool in fundamental embryogenesis as well as candidates for use in regenerative medicine. Significant efforts have been devoted to developing protocols to control ESC fate, including soluble and complex cocktails of growth factors and small molecules seeking to activate/inhibit key signaling pathways for the maintenance of pluripotency states or activate differentiation. Here we describe a novel method for the effective maintenance of mouse ESCs, avoiding the supplementation of complex inhibitory cocktails or cytokines, e.g., LIF. We show that the addition of zinc to ESC cultures leads to a stable pluripotent state that shares biochemical, transcriptional and karyotypic features with the classical LIF treatment. We demonstrate for the first time that ESCs maintained in long-term cultures with added zinc, are capable of sustaining a stable ESCs pluripotent phenotype, as well as differentiating efficiently upon external stimulation. We show that zinc promotes long-term ESC self-renewal (>30 days) via activation of ZIP7 and AKT signaling pathways. Furthermore, the combination of zinc with LIF results in a synergistic effect that enhances LIF effects, increases AKT and STAT3 activity, promotes the expression of pluripotency regulators and avoids the expression of differentiation markers.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Salmeron-Sanchez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Division of Biomedical Engineering, Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Rico
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Tobias IC, Khazaee R, Betts DH. Analysis of Mitochondrial Dimensions and Cristae Structure in Pluripotent Stem Cells Using Transmission Electron Microscopy. ACTA ACUST UNITED AC 2018; 47:e67. [PMID: 30303625 DOI: 10.1002/cpsc.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamic alterations to mitochondrial structure and function regulate cell fate decisions and underlie multiple age-related and genetic diseases that are modeled using embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Transmission electron microscopy (TEM) can be used to obtain high-resolution micrographs of mitochondria, but mitochondrial ultrastructure is easily distorted during specimen processing. This unit describes a method that preserves mitochondrial membrane structure from adherent ESC cultures for TEM sample preparation. This procedure is useful for assessing ultrastructural changes to mitochondria during differentiation, reprogramming, or experimental manipulation of ESC metabolism. We provide comprehensive protocols for: (1) preparation of ESC cultures for TEM; (2) retrieval of thin sections from individual ESCs; and (3) contrast staining and morphometric analysis of mitochondria and cristae. This unit also describes an alternative procedure for samples with low cell numbers and a supporting protocol for morphometric image analysis. Collectively, these protocols allow for the observation and quantitative analysis of mitochondria in ESCs. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- I C Tobias
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - R Khazaee
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Lawson Health Research Institute, Western University, London, Ontario, Canada.,Biotron Integrated Microscopy Facility, Biotron Research Centre, Western University, London, Ontario, Canada
| | - D H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Forsberg D, Thonabulsombat C, Jäderstad J, Jäderstad LM, Olivius P, Herlenius E. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures. ACTA ACUST UNITED AC 2017; 42:2D.13.1-2D.13.30. [PMID: 28806855 DOI: 10.1002/cpsc.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David Forsberg
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Charoensri Thonabulsombat
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Section of Otorhinolaryngology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Center for Hearing and Communication Research, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Johan Jäderstad
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Linda Maria Jäderstad
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Section of Otorhinolaryngology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Center for Hearing and Communication Research, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Chen X, Han T, Fisher JE, Harrouk W, Tassinari MS, Merry GE, Sloper D, Fuscoe JC, Hansen DK, Inselman AL. Transcriptomics analysis of early embryonic stem cell differentiation under osteoblast culture conditions: Applications for detection of developmental toxicity. Reprod Toxicol 2017; 69:75-83. [PMID: 28189605 DOI: 10.1016/j.reprotox.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/30/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Abstract
The mouse embryonic stem cell test (mEST) is a promising in vitro assay for predicting developmental toxicity. In the current study, early differentiation of D3 mouse embryonic stem cells (mESCs) under osteoblast culture conditions and embryotoxicity of cadmium sulfate were examined. D3 mESCs were exposed to cadmium sulfate for 24, 48 or 72h, and whole genome transcriptional profiles were determined. The results indicate a track of differentiation was identified as mESCs differentiate. Biological processes that were associated with differentiation related genes included embryonic development and, specifically, skeletal system development. Cadmium sulfate inhibited mESC differentiation at all three time points. Functional pathway analysis indicated biological pathways affected included those related to skeletal development, renal and reproductive function. In summary, our results suggest that transcriptional profiles are a sensitive indicator of early mESC differentiation. Transcriptomics may improve the predictivity of the mEST by suggesting possible modes of action for tested chemicals.
Collapse
Affiliation(s)
- Xinrong Chen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - J Edward Fisher
- Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Melissa S Tassinari
- Center for Drug Evaluation and Research, Food and Drug Administration, United States.
| | - Gwenn E Merry
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Deborah K Hansen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| | - Amy L Inselman
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, United States.
| |
Collapse
|
7
|
Gkountela S, Aceto N. Stem-like features of cancer cells on their way to metastasis. Biol Direct 2016; 11:33. [PMID: 27457474 PMCID: PMC4960876 DOI: 10.1186/s13062-016-0135-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED More than 90 % of cancer-related deaths are due to the development of a systemic metastatic disease. Clearly, much remains to be understood about the biological principles that govern human cancer metastasis, aiming at the ambitious objective to decrease metastasis-related mortality in patients. For many years, research on metastasis has been conducted in great part on experimental mouse models, mainly because of the difficulties in sampling, longitudinal studies, and molecular interrogation of a human metastatic disease. However, recently, extraordinary advances in microfluidic technologies are allowing the isolation and characterization of human circulating tumor cells (CTCs) that escaped a primary tumor mass and are in the process of seeding a distant metastasis. Analysis of human CTCs has now revealed important features of cancer metastasis, such as the high metastatic potential of CTC-clusters compared to single CTCs, the dynamic expression of epithelial and mesenchymal markers on CTCs during treatment, and the possibility to culture CTCs from patients for a real-time and individualized testing of drug susceptibility. Nevertheless, several aspects of CTC biology remain unsolved, such as the characterization of the stem-like cell population among human CTCs. Here, we focus on describing the latest findings in the CTC field, and discuss them in the context of cancer stem cell biology. Defining the molecular features of those few metastasis-initiating, stem-like CTCs holds the exceptional promise to develop metastasis-tailored therapies for patients with cancer. REVIEWERS This article was reviewed by Elisa Cimetta, Luca Pellegrini and Sirio Dupont (nominated by LP).
Collapse
Affiliation(s)
- Sofia Gkountela
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
8
|
Wu Y, Zhu R, Ge X, Sun X, Wang Z, Wang W, Wang M, Liu H, Wang S. Size-dependent effects of layered double hydroxide nanoparticles on cellular functions of mouse embryonic stem cells. Nanomedicine (Lond) 2015; 10:3469-82. [PMID: 26607261 DOI: 10.2217/nnm.15.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM Layered double hydroxide nanoparticles (LDH NPs) are promising for stem cell research and applications. In this study, we investigated the size-dependent interactions of LDH NPs with mouse embryonic stem cells (mESCs). MATERIALS & METHODS LDH NPs with diameters of 100 and 50 nm were synthesized and characterized. mESCs were cultured to undergo spontaneous differentiation. After incubation with LDH NPs, cytotoxicity, cellular uptake, pluripotency, differentiation and epithelial-mesenchymal transition process of mESCs were assessed. RESULTS LDH NPs with the size of 50 nm induced higher cellular uptake and more outstandingly inhibited spontaneous differentiation and epithelial-mesenchymal transition process. CONCLUSION Our research demonstrated the size-dependent effects of LDH NPs on controlling fate and cellular functions of mESCs.
Collapse
Affiliation(s)
- Youjun Wu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Rongrong Zhu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Xin Ge
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Xiaoyu Sun
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Zhaoqi Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Wenrui Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Mei Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Shilong Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
9
|
Knöspel F, Freyer N, Stecklum M, Gerlach JC, Zeilinger K. Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor. Biotechnol Prog 2015; 32:141-51. [DOI: 10.1002/btpr.2182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Fanny Knöspel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Nora Freyer
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology Berlin-Buch GmbH; Berlin Germany
| | - Jörg C. Gerlach
- McGowan Inst. for Regenerative Medicine, University of Pittsburgh; Pittsburgh PA
| | - Katrin Zeilinger
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
10
|
Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 2015; 11:592-7. [DOI: 10.1038/nchembio.1836] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023]
|
11
|
Chen X, Hansen DK, Merry G, DeJarnette C, Nolen G, Sloper D, Fisher JE, Harrouk W, Tassinari MS, Inselman AL. Developing osteoblasts as an endpoint for the mouse embryonic stem cell test. Reprod Toxicol 2015; 53:131-40. [PMID: 25929818 DOI: 10.1016/j.reprotox.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 01/03/2023]
Abstract
The mouse Embryonic Stem cell Test (EST) using cardiomyocyte differentiation is a promising in vitro assay for detecting potential embryotoxicity; however, the addition of another differentiation endpoint, such as osteoblasts, may improve the predictive value of the test. A number of variables such as culture conditions and starting cell number were investigated. A 14 day direct plating method of D3 mouse embryonic stem cells (mESCs) was used to test the predictivity of osteoblast differentiation as an endpoint in the EST. Twelve compounds were tested using the prediction model developed in the ECVAM validation study. Eight of the compounds selected from the EST validation study served as model compounds; four additional compounds known to produce skeletal defects were also tested. Our results indicate comparable chemical classification between the validated cardiomyocyte endpoint and the osteoblast endpoint. These results suggest that differentiation to osteoblasts may provide confirmatory information in predicting embryotoxicity.
Collapse
Affiliation(s)
- Xinrong Chen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration.
| | - Deborah K Hansen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration.
| | - Gwenn Merry
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration.
| | | | - Greg Nolen
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration.
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration.
| | - J Edward Fisher
- Center for Drug Evaluation and Research, Food and Drug Administration.
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, Food and Drug Administration.
| | | | - Amy L Inselman
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration.
| |
Collapse
|
12
|
Wei Z, Sun M, Liu X, Zhang J, Jin Y. Rufy3, a protein specifically expressed in neurons, interacts with actin-bundling protein Fascin to control the growth of axons. J Neurochem 2014; 130:678-92. [PMID: 24720729 DOI: 10.1111/jnc.12740] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 01/10/2023]
Abstract
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain-containing protein, is a neuron-specific and actin filament-relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament-binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones. We propose that Rufy3 may control mouse neuron axon development through its specific interaction with Fascin and Drebrin. Over-expression of Rufy3 (Rufy3 OE) leads to longer axons and expands the distribution of Drebrin to almost the entire growth cone. In contrast, knockdown of Rufy3 (Rufy3 RNAi) results in shortened axons and enhanced the percentage of mutipolar neurons. Moreover, silencing of Rufy3 reduces and restricts the expression of Fascin and F-actin to the edge of the growth cone. These findings provide new insights into the molecular regulation of axonal outgrowth and cell polarization in neurons.
Collapse
Affiliation(s)
- Zhe Wei
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
13
|
Zamudio JR, Kelly TJ, Sharp PA. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 2014; 156:920-34. [PMID: 24581493 PMCID: PMC4111103 DOI: 10.1016/j.cell.2014.01.041] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/12/2013] [Accepted: 01/09/2014] [Indexed: 01/15/2023]
Abstract
Argonaute (Ago) proteins mediate posttranscriptional gene repression by binding guide miRNAs to regulate targeted RNAs. To confidently assess Ago-bound small RNAs, we adapted a mouse embryonic stem cell system to express a single epitope-tagged Ago protein family member in an inducible manner. Here, we report the small RNA profile of Ago-deficient cells and show that Ago-dependent stability is a common feature of mammalian miRNAs. Using this criteria and immunopurification, we identified an Ago-dependent class of noncanonical miRNAs derived from protein-coding gene promoters, which we name transcriptional start site miRNAs (TSS-miRNAs). A subset of promoter-proximal RNA polymerase II (RNAPII) complexes produces hairpin RNAs that are processed in a DiGeorge syndrome critical region gene 8 (Dgcr8)/Drosha-independent but Dicer-dependent manner. TSS-miRNA activity is detectable from endogenous levels and following overexpression of mRNA constructs. Finally, we present evidence of differential expression and conservation in humans, suggesting important roles in gene regulation.
Collapse
Affiliation(s)
- Jesse R Zamudio
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy J Kelly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A Sharp
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501:373-9. [PMID: 23995685 PMCID: PMC3817409 DOI: 10.1038/nature12517] [Citation(s) in RCA: 3215] [Impact Index Per Article: 292.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 08/02/2013] [Indexed: 02/06/2023]
Abstract
The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.
Collapse
Affiliation(s)
- Madeline A Lancaster
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna 1030, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Przybyla LM, Theunissen TW, Jaenisch R, Voldman J. Matrix remodeling maintains embryonic stem cell self-renewal by activating Stat3. Stem Cells 2013; 31:1097-106. [PMID: 23404867 PMCID: PMC3664106 DOI: 10.1002/stem.1360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/19/2013] [Indexed: 12/17/2022]
Abstract
While a variety of natural and synthetic matrices have been used to influence embryonic stem cell (ESC) self-renewal or differentiation, and ESCs also deposit a rich matrix of their own, the mechanisms behind how extracellular matrix affects cell fate are largely unexplored. The ESC matrix is continuously remodeled by matrix metalloproteinases (MMPs), a process that we find is enhanced by the presence of mouse embryonic fibroblast feeders in a paracrine manner. Matrix remodeling by MMPs aids in the self-renewal of ESCs, as inhibition of MMPs inhibits the ability of ESCs to self-renew. We also find that addition of the interstitial collagenase MMP1 is sufficient to maintain long-term leukemia inhibitory factor (LIF)-independent mouse ESC (mESC) self-renewal in a dose-dependent manner. This remarkable ability is due to the presence of endogenously produced self-renewal-inducing signals, including the LIF-family ligand ciliary neurotrophic factor, that are normally trapped within the ECM and become exposed upon MMP-induced matrix remodeling to signal through JAK and Stat3. These results uncover a new role for feeder cells in maintaining self-renewal and show that mESCs normally produce sufficient levels of autocrine-acting pro-self-renewal ligands.
Collapse
Affiliation(s)
- Laralynne M. Przybyla
- Dept. of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| | - Thorold W. Theunissen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, USA, 02142
| | - Rudolf Jaenisch
- Dept. of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, USA, 02142
| | - Joel Voldman
- Dept. Of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| |
Collapse
|
16
|
Kassmer SH, Krause DS. Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 2013; 80:677-90. [PMID: 23440892 DOI: 10.1002/mrd.22168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/17/2013] [Indexed: 01/15/2023]
Abstract
Very small embryonic-like cells (VSELs), found in murine bone marrow and other adult tissues, are small, non-hematopoietic cells expressing markers of pluripotent embryonic and primordial germ cells. A similar cell type in humans has begun to be characterized, though with a slightly different phenotype and surface markers. Consistent with expression of pluripotency genes, murine VSELs differentiate into cell types from three germ-layer lineages in vitro, though pluripotency has yet to be shown at the single-cell level or in vivo. VSELs appear to be quiescent under steady state conditions, apparently due to partially erased imprinting and overexpression of cell cycle inhibitory genes. In vivo, VSELs can enter the cell cycle under stress conditions, but which factors regulate quiescence versus proliferation and self-renewal versus differentiation are as yet unknown, and in vitro conditions that induce proliferation and self-renewal have yet to be defined. Future experiments are needed to address whether a VSEL niche actively regulates quiescence in vivo or quiescence is cell autonomous under steady state conditions. Insights into these mechanisms may help to address whether or not VSELs could play a role in regenerative medicine in the future.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
17
|
Inhibition of Mcl-1 promotes senescence in cancer cells: implications for preventing tumor growth and chemotherapy resistance. Mol Cell Biol 2012; 32:1879-92. [PMID: 22451485 DOI: 10.1128/mcb.06214-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although senescence in oncogenesis has been widely studied, little is known regarding the role of this process in chemotherapy resistance. Thus, from the standpoint of enhancing and improving cancer therapy, a better understanding of the molecular machinery involved in chemotherapy-related senescence is paramount. We show for the first time that Mcl-1, a Bcl-2 family member, plays an important role in preventing chemotherapy-induced senescence (CIS). Overexpression of Mcl-1 in p53⁺ cell lines inhibits CIS. Conversely, downregulation of Mcl-1 makes cells sensitive to CIS. Surprisingly, downregulation of Mcl-1 in p53⁻ cells restored CIS to similar levels as p53⁺ cells. In all cases where senescence can be induced, we observed increased p21 expression. Moreover, we show that the domain of Mcl-1 responsible for its antisenescent effects is distinct from that known to confer its antiapoptotic qualities. In vivo we observe that downregulation of Mcl-1 can almost retard tumor growth regardless of p53 status, while overexpression of Mcl-1 in p53⁺ cells conferred resistance to CIS and promoted tumor outgrowth. In summary, our data reveal that Mcl-1 can inhibit CIS in both a p53-dependent and -independent manner in vitro and in vivo and that this Mcl-1-mediated inhibition can enhance tumor growth in vivo.
Collapse
|
18
|
Hasegawa Y, Takahashi N, Forrest ARR, Shin JW, Kinoshita Y, Suzuki H, Hayashizaki Y. CC chemokine ligand 2 and leukemia inhibitory factor cooperatively promote pluripotency in mouse induced pluripotent cells. Stem Cells 2011; 29:1196-205. [PMID: 21681859 DOI: 10.1002/stem.673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pluripotency of mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be maintained by feeder cells, which secrete leukemia inhibitory factor (LIF). We found that feeder cells provide a relatively low concentration (25 unit/ml) of LIF, which is insufficient to maintain the ESCs/iPSCs pluripotency in feeder free conditions. To identify additional factors involved in the maintenance of pluripotency, we carried out a global transcript expression profiling of mouse iPSCs cultured on feeder cells and in feeder-free (LIF-treated) conditions. This identified 17 significantly differentially expressed genes (adjusted p value <0.05) including seven chemokines overexpressed in iPSCs grown on feeder cells. Ectopic expression of these chemokines in iPSCs revealed that CC chemokine ligand 2 (Ccl2) induced the key transcription factor genes for pluripotency, Klf4, Nanog, Sox2, and Tbx3. Furthermore, addition of recombinant Ccl2 protein drastically increased the number of Nanog-green fluorescent protein-positive iPSCs grown in low-LIF feeder free conditions. We further revealed that pluripotency promotion by Ccl2 is mediated by activating the Stat3-pathway followed by Klf4 upregulation. We demonstrated that Ccl2-mediated increased pluripotency is independent of phosphoinositide 3-kinase and mitogen-activated protein kinase pathways and that Tbx3 may be upregulated by Klf4. Overall, Ccl2 cooperatively activates the Stat3-pathway with LIF in feeder-free conditions to maintain pluripotency for ESCs/iPSCs.
Collapse
Affiliation(s)
- Yuki Hasegawa
- RIKEN Omics Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2011; 147:789-802. [PMID: 22056041 DOI: 10.1016/j.cell.2011.10.002] [Citation(s) in RCA: 1583] [Impact Index Per Article: 121.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/19/2011] [Accepted: 09/13/2011] [Indexed: 12/14/2022]
Abstract
The ability to sequence genomes has far outstripped approaches for deciphering the information they encode. Here we present a suite of techniques, based on ribosome profiling (the deep sequencing of ribosome-protected mRNA fragments), to provide genome-wide maps of protein synthesis as well as a pulse-chase strategy for determining rates of translation elongation. We exploit the propensity of harringtonine to cause ribosomes to accumulate at sites of translation initiation together with a machine learning algorithm to define protein products systematically. Analysis of translation in mouse embryonic stem cells reveals thousands of strong pause sites and unannotated translation products. These include amino-terminal extensions and truncations and upstream open reading frames with regulatory potential, initiated at both AUG and non-AUG codons, whose translation changes after differentiation. We also define a class of short, polycistronic ribosome-associated coding RNAs (sprcRNAs) that encode small proteins. Our studies reveal an unanticipated complexity to mammalian proteomes.
Collapse
Affiliation(s)
- Nicholas T Ingolia
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
20
|
Huang X, Wu SM. Isolation and functional characterization of pluripotent stem cell-derived cardiac progenitor cells. ACTA ACUST UNITED AC 2011; Chapter 1:Unit 1F.10. [PMID: 20814937 DOI: 10.1002/9780470151808.sc01f10s14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of transgenic markers in pluripotent stem cells allows the facile isolation of transient cell populations that appear at certain phases of embryonic development. Here, we describe a procedure for deriving cardiac progenitors from mouse pluripotent stem cells carrying a GFP reporter under the control of an Nkx2.5 enhancer sequence. The cells are propagated under standard conditions and are differentiated using the hanging-droplet method with medium optimized for commitment to the cardiac lineage. Cardiac progenitors are isolated from the differentiation culture using fluorescence-activated cell sorting (FACS) and can be cultured further for functional characterization and experimentation. The protocols described here can be applied to both embryonic and induced pluripotent stem cells and can easily be adapted to transgenic lines carrying other cardiac cell lineage reporters.
Collapse
Affiliation(s)
- Xiaojing Huang
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
21
|
Abstract
Mouse embryonic stem cells (mESCs) were first derived and cultured almost 30 years ago and ever since have been valuable tools for creating knockout mice and for studying early mammalian development. More recently (1998), human embryonic stem cells (hESCs) have been derived from blastocysts, and numerous methods have evolved to culture hESCs in vitro in both complex and defined media. hESCs are especially important at this time as they could potentially be used to treat degenerative diseases and to access the toxicity of new drugs and environmental chemicals. For both human and mouse ESCs, fibroblast feeder layers are often used at some phase in the culturing protocol. The feeders - often mouse embryonic fibroblasts (mEFs) - provide a substrate that increases plating efficiency, helps maintain pluripotency, and facilitates survival and growth of the stem cells. Various protocols for culturing embryonic stem cells from both species are available with newer trends moving toward feeder-free and serum-free culture. The purpose of this chapter is to provide basic protocol information on the isolation of mouse embryonic fibroblasts and establishment of feeder layers, the culture of mESCs on both mEFs and on gelatin in serum-containing medium, and the culture of hESCs in defined media on both mEFs (hESC culture medium) and Matrigel (mTeSR). These basic protocols are intended for researchers wanting to develop stem cell research in their labs. These protocols have been tested in our laboratory and work well. They can be modified and adapted for any relevant user's particular purpose.
Collapse
|
22
|
Ben-Yehudah A, Navara CS, Redinger CJ, Mich-Basso JD, Castro CA, Oliver S, Chensny LJ, Richards TJ, Kaminski N, Schatten G. Pluripotency genes overexpressed in primate embryonic stem cells are localized on homologues of human chromosomes 16, 17, 19, and X. Stem Cell Res 2009; 4:25-37. [PMID: 19854689 DOI: 10.1016/j.scr.2009.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/02/2023] Open
Abstract
While human embryonic stem cells (hESCs) are predisposed toward chromosomal aneploidities on 12, 17, 20, and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes overexpressed in pluripotent rhesus ESCs (nhpESCs) and comparing them both to their genetically identical differentiated progeny (teratoma fibroblasts) and to genetically related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those overexpressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20, and X, homologues of human chromosomes 17, 19, 16, and X, respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over- and underexpressed pluripotency modulators, some implicated in neurogenesis, have been identified. The overexpression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.
Collapse
Affiliation(s)
- Ahmi Ben-Yehudah
- Pittsburgh Development Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|