1
|
Ma JT, Chen T, Tang BC, Chen XL, Yu ZC, Zhou Y, Zhuang SY, Wu YD, Xiang JC, Wu AX. A Pummerer Reaction-Enabled Modular Synthesis of Alkyl Quinoline-3-carboxylates and 3-Arylquinolines from Amino Acids. J Org Chem 2023; 88:3760-3771. [PMID: 36821870 DOI: 10.1021/acs.joc.2c03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Concise synthesis of functionalized quinolines has received continuous research attention owing to the biological importance and synthetic potential of bicyclic N-heterocycles. However, synthetic routes to the 2,4-unsubstituted alkyl quinoline-3-carboxylate scaffold, which is an important motif in drug design, remain surprisingly limited, with modular protocols that proceed from readily available materials being even more so. We herein report an acidic I2-DMSO system that converts readily available aspartates and anilines into alkyl quinoline-3-carboxylate. This method can be extended to a straightforward synthesis of 3-arylquinolines by simply replacing the aspartates with phenylalanines. Mechanistic studies revealed that DMSO was activated by HI via a Pummerer reaction to provide the C1 synthon, while the amino acid catabolized to the C2 synthon through I2-mediated Strecker degradation. A formal [3 + 2 + 1] annulation of these two concurrently generated synthons with aniline was responsible for the selective formation of the quinoline core. The synthetic utility of this protocol was illustrated by the efficient synthesis of human 5-HT4 receptor ligand. Moreover, an unprecedented chemoselective synthesis of 2-deuterated, 3-substituted quinoline, featuring this reaction, has been established.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|