1
|
Calvigioni D, Máté Z, Fuzik J, Girach F, Zhang MD, Varro A, Beiersdorf J, Schwindling C, Yanagawa Y, Dockray GJ, McBain CJ, Hökfelt T, Szabó G, Keimpema E, Harkany T. Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cereb Cortex 2017; 27:2453-2468. [PMID: 27102657 DOI: 10.1093/cercor/bhw094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although extensively studied postnatally, the functional differentiation of cholecystokinin (CCK)-containing interneurons en route towards the cerebral cortex during fetal development is incompletely understood. Here, we used CCKBAC/DsRed mice encoding a CCK promoter-driven red fluorescent protein to analyze the temporal dynamics of DsRed expression, neuronal identity, and positioning through high-resolution developmental neuroanatomy. Additionally, we developed a dual reporter mouse line (CCKBAC/DsRed::GAD67gfp/+) to differentiate CCK-containing interneurons from DsRed+ principal cells during prenatal development. We show that DsRed is upregulated in interneurons once they exit their proliferative niche in the ganglionic eminence and remains stably expressed throughout their long-distance migration towards the cerebrum, particularly in the hippocampus. DsRed+ interneurons, including a cohort coexpressing calretinin, accumulated at the palliosubpallial boundary by embryonic day 12.5. Pioneer DsRed+ interneurons already reached deep hippocampal layers by embryonic day 14.5 and were morphologically differentiated by birth. Furthermore, we probed migrating interneurons entering and traversing the cortical plate, as well as stationary cells in the hippocampus by patch-clamp electrophysiology to show the first signs of Na+ and K+ channel activity by embryonic day 12.5 and reliable adult-like excitability by embryonic day 18.5. Cumulatively, this study defines key positional, molecular, and biophysical properties of CCK+ interneurons in the prenatal brain.
Collapse
Affiliation(s)
- Daniela Calvigioni
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083 Budapest, Hungary
| | - János Fuzik
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Ming-Dong Zhang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3BX Liverpool, UK
| | - Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Christian Schwindling
- Microscopy Labs Munich, Global Sales Support-Life Sciences, Carl Zeiss Microscopy GmbH, Kistlerhofstrasse 75, D-81379 Munich, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Graham J Dockray
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083 Budapest, Hungary
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
2
|
van Marle J, Piek T, Lind A, van Weeren-Kramer J. Reduction of high affinity glutamate uptake in rat hippocampus by two polyamine-like toxins isolated from the venom of the predatory wasp Philanthus triangulum F. EXPERIENTIA 1986; 42:157-8. [PMID: 2868914 DOI: 10.1007/bf01952444] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two components of the venom of the predatory wasp Philanthus triangulum F. significantly reduce--to a greater or less extent--the high affinity uptake of glutamate in rat hippocampus. A concentration of 10 microM delta-PTX caused a reduction of 74%, while the other component, beta-PTX, at the same concentration, caused a reduction of 18%. Hence the effect of delta-PTX on high affinity glutamate uptake in the hippocampus is comparable with its effect on high affinity glutamate uptake in insect neuromuscular junctions. Contrary to our previous findings that beta-PTX has no effect on high affinity glutamate uptake in insect glutamatergic terminal axons, however, beta-PTX significantly reduces high affinity glutamate uptake in the hippocampus, albeit less effectively than delta-PTX.
Collapse
|