Blondeau JP, Baulieu EE. Progesterone receptor characterized by photoaffinity labelling in the plasma membrane of Xenopus laevis oocytes.
Biochem J 1984;
219:785-92. [PMID:
6540084 PMCID:
PMC1153545 DOI:
10.1042/bj2190785]
[Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
R 5020 (17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione) is a synthetic analogue of progesterone, which is the physiological hormone that reinitiates germinal vesicle breakdown in Xenopus laevis oocytes. U.v.-driven photoaffinity labelling experiments were conducted with [3H]R 5020 in oocyte subcellular fractions, and covalently bound radioactivity was analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. In P-10000 (the pellet sedimenting between 1000 and 10000 g and which contains plasma membrane), a major radioactive band migrating as a 30kDa peptide was found. Non-radioactive progesterone competed with the [3H]R 5020 labelling of this fraction, but not with the labelling of minor [3H]R 5020-binding fractions. It displayed the required characteristics of a specific progesterone-binding membrane 'receptor', postulated from previous studies with intact oocytes and with cell-free P-10000 preparations of membrane-bound adenylate cyclase. The apparent Ki of approx. 4 microM for progesterone was compatible with the active concentration of the hormone. Binding specificity, as determined in competition studies, was highly correlated with the germinal vesicle breakdown activity of the steroids and analogues tested. The receptor was not found in the vitelline envelope, in vitelline platelets, in melanosome-enriched or microsomal fractions, in cytosol, nor in germinal vesicles of oocytes. The properties of this membrane steroid receptor are different from those of the already known soluble intracellular steroid receptors, in particular regarding ligand binding specificity and subcellular distribution.
Collapse