1
|
Charron R, Lemée P, Huguet A, Minlong O, Boulanger M, Houée P, Soumet C, Briandet R, Bridier A. Strain-dependent emergence of aminoglycoside resistance in Escherichia coli biofilms. Biofilm 2025; 9:100273. [PMID: 40161323 PMCID: PMC11952850 DOI: 10.1016/j.bioflm.2025.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
In most Earth environments, bacteria predominantly exist within surface-associated communities known as biofilms, where they are embedded in an extracellular matrix. These collective structures play a critical role in bacterial physiology and significantly shape their evolutionary trajectories, contributing to the development of antimicrobial resistance and enhancing bacterial resilience to treatments, with profound implications for public health. This study assessed the impact of the biofilm lifestyle on the emergence of resistance to gentamicin, an aminoglycoside antibiotic, in one laboratory reference strain and seven Escherichia coli isolates from food-processing environments. Throughout a one-month evolution experiment, we observed that certain strains showed a markedly higher emergence of gentamicin-resistant variants in biofilms than in planktonic states, with the emergence of stable variants being closely linked to biofilm maturation. Genomic and phenotypic analyses of gentamicin-resistant (GenR) variants uncovered varied adaptive strategies among the strains. GenR variants from two food-processing isolates (Ec709 and Ec478) displayed point mutations in genes associated with central carbon metabolism (aceE, ygfZ, …) and cell respiration (atpG, cydA, …), while retaining relative growth and colonization capacities. Conversely, GenR variants from the reference strain (Ec1655) adapted preferentially through large genomic deletions, including consistent loss of the peptide transporter gene sbmA, significantly altering cellular fitness. These findings highlight the complexity of adaptive evolution in biofilms and underscore the importance of investigating diverse strains to grasp the full spectrum of adaptation in natural bacterial populations.
Collapse
Affiliation(s)
- Raphaël Charron
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Pierre Lemée
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Antoine Huguet
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Ornella Minlong
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Marine Boulanger
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Paméla Houée
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Christophe Soumet
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, Fougères, Anses, 35300, France
| |
Collapse
|
2
|
Koç İ, Onbasli K, Kurt C, Atac N, Cooper FK, Çam K, Cakir E, Yagan R, Can F, Sennaroglu A, Onbasli MC, Yagci Acar H. Rational control of combined photothermal and photodynamic therapy for effective eradication of biofilms. NANOSCALE 2025. [PMID: 40434218 PMCID: PMC12118452 DOI: 10.1039/d4nr03798g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
New therapies are essential for eliminating antibiotic-resistant bacteria and their biofilms, which are a major global health threat, causing millions of deaths annually. Here, we demonstrate a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) for the inhibition of biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis using aminolevulinic acid (ALA)-loaded polyacrylic acid-coated superparamagnetic iron oxide nanoparticles (PAA-SPIONs) at 200, 600 and 1000 μg mL-1 Fe concentrations under 640 nm (0.75 W cm-2), 808 nm (2.6 W cm-2) and 640 + 808 nm (0.75 + 2.6 W cm-2, 20 min) irradiation. PTT experiments indicate ALA/PAA-SPION concentration-dependent heating up to 10.2 °C for PAA-SPIONs and 9.3 °C for ALA/PAA-SPIONs under combined 640 + 808 nm laser excitation. Bacterial growth inhibition by ALA/PAA-SPIONs was investigated with and without laser irradiation for 10 min using 150 and 600 μg Fe per mL or 0.5 mM and 2 mM ALA on both bacterial types. These experiments indicate a 3 to 6-log reduction in P. aeruginosa compared to control samples (without nanoparticles or a laser) with increasing Fe and ALA concentrations. Growth was completely inhibited by ALA/PAA-SPIONs under 640 + 808 nm irradiation. ALA/PAA-SPIONs caused growth inhibition of S. epidermidis between 2-log and 4-log with increasing wavelengths, Fe and ALA doses. PAA-SPIONs and a laser together inhibited the biofilms of P. aeruginosa with 3 to 11-log reductions with increasing laser wavelengths. The reduction of the biofilm with ALA/PAA-SPIONs and a laser reaches 8-log for 640 nm and 13-log for 808 nm excitation. We accurately model the wavelength, time, and nanoparticle concentration dependence of PTT for the first time. These results pave the way for effective PDT/PTT elimination of biofilms of P. aeruginosa and S. epidermidis.
Collapse
Affiliation(s)
- İrem Koç
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
| | - Kubra Onbasli
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Metallurgical and Materials Engineering Department, 34469 Maslak, Istanbul, Türkiye
| | - Cem Kurt
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
| | - Nazli Atac
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Francis K Cooper
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Kübra Çam
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Ece Cakir
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
| | - Rawana Yagan
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
| | - Fusun Can
- School of Medicine, Medical Microbiology, Koç University, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
| | - Alphan Sennaroglu
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koc University, Department of Physics, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
| | - Mehmet C Onbasli
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
- Koç University Department of Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koç University-İşbank Center for Infectious Diseases (KUISCID), Istanbul, Türkiye
- Koc University, Department of Physics, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Türkiye
- Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
| | - Havva Yagci Acar
- Koç University, Graduate School of Sciences and Engineering, Materials Science and Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Türkiye.
- Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Türkiye
| |
Collapse
|
3
|
Reynolds CA, Scuderi RA, Skidmore AL, Duniere L, Morrison SY. A multi-strain, biofilm-forming cocktail of Bacillus spp. and Pediococcus spp. alters the microbial composition on polyethylene calf housing surfaces. Microbiol Spectr 2025:e0330224. [PMID: 40434129 DOI: 10.1128/spectrum.03302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Application of a beneficial microbial cocktail of Bacillus spp. and Pediococcus spp. was evaluated first for adherence to polyethylene calf hutch material, and second, to determine if application in situ to individual calf hutches post-cleaning influenced surface recolonization by enteric pathogens. Three treatments were utilized: (i) no application (NC), (ii) chlorine-free, distilled water (DW), or (iii) an application of a microbial inoculant containing Bacillus spp. and Pediococcus spp. at a concentration of 0.4 g/m2 of hutch space (LF). Thirty-six 15 × 15 cm pieces of naïve, sterile polyethylene calf hutch material received either NC or LF and were incubated at 28°C, and bacterial growth was evaluated by total aerobic plate counts at 24, 48, and 72 h post-application. Thirty polyethylene calf hutches (n = 10/treatment) were randomized to NC, DW, or LF 24 h after cleaning. Calves were placed in the hutches 24 h after treatment application and monitored daily for 28 d. In situ surface samples were randomized by time from five unique locations within the calf hutch interior: 24 h post-cleaning and then 24 h, 7 d, 14 d, and 21 d post-application. Total aerobic plate counts and culture-independent approaches RT-qPCR and 16S amplicon sequencing were used to detect and identify the composition of the bacterial community in situ. The bacteria in the inoculant were able to successfully colonize on polyethylene, and application to individual polyethylene calf housing in situ influenced microbial diversity and reduced the presence of some undesirable bacteria on high-contact interior surfaces.IMPORTANCEDue to its multifactorial nature, neonatal calf diarrhea can be difficult to manage on farms. Clean housing environments are a critical disease control point, especially for calves less than one month of age. Application of a beneficial biofilm-forming bacterial product after cleaning of neonatal calf housing may influence the microbial communities present on the surface, particularly those that may present disease risk to calves in early life.
Collapse
Affiliation(s)
- C A Reynolds
- William H. Miner Agricultural Research Institute, Chazy, New York, USA
| | - R A Scuderi
- Lallemand Specialties Inc., Milwaukee, Wisconsin, USA
| | - A L Skidmore
- Lallemand Specialties Inc., Milwaukee, Wisconsin, USA
| | | | - S Y Morrison
- William H. Miner Agricultural Research Institute, Chazy, New York, USA
| |
Collapse
|
4
|
Garcia-Maset R, Chu V, Yuen N, Blumgart D, Yoon J, Murray BO, Joseph AA, Rohn JL. Effect of host microenvironment and bacterial lifestyles on antimicrobial sensitivity and implications for susceptibility testing. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:42. [PMID: 40399473 PMCID: PMC12095824 DOI: 10.1038/s44259-025-00113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/01/2025] [Indexed: 05/23/2025]
Abstract
Bacterial infections remain a major global health issue, with antimicrobial resistance (AMR) worsening the crisis. However, treatment failure can occur even when bacteria show antibiotic susceptibility in diagnostic tests. We explore factors such as phenotypic resilience, bacterial lifestyles such as biofilms, and differences between laboratory tests and real infection sites, highlighting the need for improved platforms to better predict treatment outcomes, and reviewing emerging technologies aimed at improving susceptibility testing.
Collapse
Affiliation(s)
- Ramon Garcia-Maset
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK.
| | - Victoria Chu
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Nicholas Yuen
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Dalia Blumgart
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Jenny Yoon
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Benjamin O Murray
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Amelia A Joseph
- Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Jennifer L Rohn
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
O'Reilly P, Loiselle G, Darragh R, Slipski C, Bay DC. Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:39. [PMID: 40360746 PMCID: PMC12075810 DOI: 10.1038/s44259-025-00108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Decreased bacterial susceptibility to biocides raises concerns due to their influences on antibiotic resistance. The lack of standardized breakpoints, established methods, and consistent terminology complicates this research. This review summarizes techniques for studying biocide resistance mechanisms, susceptibility testing, and in-vitro adaptation methods, highlighting their benefits and limitations. Here, the challenges in studying biocide susceptibility and the need for standardized approaches in biocide research are emphasized for commonly studied biocide classes.
Collapse
Affiliation(s)
- Peter O'Reilly
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Genevieve Loiselle
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Darragh
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Carmine Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Wuersching SN, Kohl L, Hickel R, Schwendicke F, Kollmuss M. Assessing the marginal seal of bioactive restorative materials in class II cavities with a bacterial penetration model. Dent Mater 2025; 41:553-560. [PMID: 40074569 DOI: 10.1016/j.dental.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES The aim of this study was to examine the marginal seal of novel bioactive restorative materials and the material-related properties associated with bacterial microleakage. METHODS Class II cavities prepared into human extracted teeth were restored with: Venus Diamond (VD) + selective enamel etching (SEE)/self-etching universal adhesive (SEA), ACTIVA BioACTIVE RESTORATIVE (AB) + SEE/SEA, Cention Forte (CF) + Cention Primer, Ketac Universal Aplicap (KU), EQUIA Forte HT (EF) and Surefil One (SO) and exposed to a cariogenic multi-species bacterial suspension for 7 days. Bacterial microleakage was visualized with a modified gram staining protocol and bacterial penetration depths were microscopically determined after sectioning the teeth. Disc-shaped specimens (10 mm x 2 mm, n = 6) were used for assessing possible antimicrobial effects and the pH of the materials. RESULTS Bacterial microleakage occurred in 14.7 % (VD), 7.1 % (AB), 2.9 % (CF), 47.6 % (KU), 34.0 % (EF) and 55.7 % (SO) of the examined margins. When bacterial penetration occurred, it was limited to the enamel in cavities restored with KU, EF and SO, but reached into dentin of VD, AB, and CF restorations. While SO led to bacterial growth arrest, all other materials only exhibited a weak antibacterial effect. CF immersed in water created an alkaline pH (∼9), which remained high until the end of the measurement after 3 months. CONCLUSIONS Bacterial microleakage occurred less frequently when adhesive pretreatment was performed prior to restoration. CF showed promising results in terms of a tight marginal seal, which may be attributed to continuous ion release and local pH regulation. CLINICAL SIGNIFICANCE Establishing materials with an improved marginal seal is essential for ensuring longevity of direct restorations and preventing secondary caries development. Bioactive restorative materials, when used with complementary adhesives, show greater resilience to bacterial penetration compared to self-adhesive materials, making them a promising future alternative to nanohybrid composites.
Collapse
Affiliation(s)
- Sabina Noreen Wuersching
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Goethestrasse 70, Munich 80336, Germany. .-muenchen.de
| | - Lisa Kohl
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Goethestrasse 70, Munich 80336, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Goethestrasse 70, Munich 80336, Germany
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Goethestrasse 70, Munich 80336, Germany
| | - Maximilian Kollmuss
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Goethestrasse 70, Munich 80336, Germany
| |
Collapse
|
7
|
Gross N, Muhvich J, Ching C, Gomez B, Horvath E, Nahum Y, Zaman MH. Effects of microplastic concentration, composition, and size on Escherichia coli biofilm-associated antimicrobial resistance. Appl Environ Microbiol 2025; 91:e0228224. [PMID: 40067049 PMCID: PMC12016508 DOI: 10.1128/aem.02282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 04/24/2025] Open
Abstract
Microplastics (MPs) have emerged as a significant environmental pollutant with profound implications for public health, particularly as substrates to facilitate bacterial antimicrobial resistance (AMR). Recently, studies have shown that MPs may accommodate biofilm communities, chemical contaminants, and genetic material containing AMR genes. This study investigated the effects of MP concentration, composition, and size on the development of multidrug resistance in Escherichia coli. Specifically, we exposed E. coli to varying concentrations of different MP types, including polyethylene, polystyrene, and polypropylene, across a range of sizes (3-10, 10-50, and 500 µm). Results indicated that the biofilm cells attached to MPs had elevated multidrug resistance (in E. coli. Notably, MPs exhibited a higher propensity for facilitating biofilm and resistance than control substrates such as glass, likely due to their hydrophobicity, greater adsorption capacities, and surface chemistries. Notably, we found that the bacteria passaged with MPs formed stronger biofilms once the MPs were removed, which was associated with changes in motility. Thus, MPs select cells that are better at forming biofilms, which can lead to biofilm-associated AMR and recalcitrant infections in the environment and healthcare setting. Our study highlights the importance of developing effective strategies to address the challenges posed by MPs. IMPORTANCE Antimicrobial resistance (AMR) is one of the world's most pressing global health crises. With the pipeline of antibiotics running dry, it is imperative that mitigation strategies understand the mechanisms that drive the genesis of AMR. One emerging dimension of AMR is the environment. This study highlights the relationship between a widespread environmental pollutant, microplastics (MPs), and the rise of drug-resistant bacteria. While it is known that MPs facilitate resistance through several modes (biofilm formation, plastic adsorption rates, etc.), this study fills the knowledge gap on how different types of MPs are contributing to AMR.
Collapse
Affiliation(s)
- Neila Gross
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Carly Ching
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Bridget Gomez
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Evan Horvath
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Yanina Nahum
- Center on Forced Displacement, Boston University, Boston, Massachusetts, USA
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center on Forced Displacement, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Alvarez L, Kumaran KS, Nitha B, Sivasubramani K. Evaluation of biofilm formation and antimicrobial susceptibility (drug resistance) of Candida albicans isolates. Braz J Microbiol 2025; 56:353-364. [PMID: 39500825 PMCID: PMC11885723 DOI: 10.1007/s42770-024-01558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/27/2024] [Indexed: 03/09/2025] Open
Abstract
Candida albicans comprises over 80% of isolates from all forms of human candidiasis. Biofilm formation enhances their capacity to withstand therapeutic treatments. In addition to providing protection, biofilm formation by C. albicans enhances its pathogenicity. Understanding the fundamental mechanisms underlying biofilm formation is crucial to advance our understanding and treatment of invasive Candida infections. An initial screening of 57 Candida spp. isolates using CHROMagar Candida (CHROMagar) media revealed that 46 were C. albicans. Of these, 12 isolates (33.3%) had the capacity to form biofilms. These 12 isolates were subjected to multiple biochemical and physiological tests, as well as 18 S rRNA sequencing, to confirm the presence of C. albicans. Upon analysis of their sensitivity to conventional antifungal agents, the isolates showed varying resistance to terbinafine (91.6%), voriconazole (50%), and fluconazole (42%). Among these, only CD50 showed resistance to all antifungal agents. Isolate CD50 also showed the presence of major biofilm-specific genes such as ALS3, EFG1, and BCR1, as confirmed by PCR. Exposure of CD50 to gentamicin-miconazole, a commonly prescribed drug combination to treat skin infections, resulted in elevated levels of gene expression, with ALS3 showing the highest fold increase. These observations highlight the necessity of understanding the proteins involved in biofilm formation and designing ligands with potential antifungal efficacy.
Collapse
Affiliation(s)
- Loretta Alvarez
- Department of Microbiology, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - K Senthil Kumaran
- Department of Microbiology, Karur Government Medical College & Hospital, Karur, Tamilnadu, India
| | - B Nitha
- Department of Biochemistry & Industrial Microbiology, Sree Ayyappa College, Eramallikkara, Chengannur, Alappuzha, Kerala, 689109, India
| | - K Sivasubramani
- Department of Microbiology, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India.
| |
Collapse
|
9
|
Alobaid SA, Shrestha S, Tasseff M, Wang B, van Hoek ML, Dutta PK. Activity of silver-zinc nanozeolite-based antibiofilm wound dressings in an in vitro biofilm model and comparison with commercial dressings. DISCOVER NANO 2025; 20:26. [PMID: 39932517 DOI: 10.1186/s11671-025-04208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Infected wounds are a major health problem as infection can delay wound healing. Wound dressings play an important part in wound care by maintaining a suitable environment that promotes healing. Silver sulfadiazine dressings have been used to prevent infection in burn wounds. Presently, many commercial silver dressings have obtained FDA clearance. RESULTS In this study, we report on a novel silver dressing using microporous aluminosilicate zeolites, termed ABF-XenoMEM. Silver and zinc ions are encapsulated in the zeolite supercages. We show that the silver-zinc zeolite (AM30) alone is effective at inhibiting biofilm formation. The encapsulation protects the silver from rapidly precipitating in biological fluids. We exploit the negatively charged zeolite surface to associate positively charged quaternary ammonium ions (quat) with the zeolite. The combination of the AM30 with the quat enhances the antimicrobial activity. The colloidal nature of the zeolite materials makes it possible to make uniform deposits on a commercial extracellular matrix membrane to develop the final dressing (ABF-XenoMEM). The optimum loading of silver, zinc, and quat on the dressing was found to be 30, 3.7, and 221 µg/cm2. Using a colony biofilm model, the activity of ABF-XenoMEM is compared with four well-studied silver-based commercial dressings towards mature biofilms of Pseudomonas aeruginosa PAO1 (ATCC 4708) and methicillin-resistant Staphylococcus aureus (ATCC 33592). Cytotoxicity of the dressings was examined in HepG2 cells using the MTT assay. CONCLUSION This study shows that the ABF-XenoMEM is competitive with extensively used commercial wound dressings in a colony biofilm model. Nanozeolite-entrapped silver/zinc antimicrobials in association with quat have the potential for application in biofilm-infected wounds and require animal and clinical studies for definitive proof.
Collapse
Affiliation(s)
| | | | - Morgan Tasseff
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Bo Wang
- Zeovation Inc., Columbus, OH, 43212, USA
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| | - Prabir K Dutta
- Zeovation Inc., Columbus, OH, 43212, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Dos Santos EA, Marin VR, de Angelis DA, Ferreira H, Sass DC. Isolation and anti-Xanthomonas citri activity of unguinol produced by Aspergillus unguis CBMAI 2140. Lett Appl Microbiol 2025; 78:ovaf016. [PMID: 39900472 DOI: 10.1093/lambio/ovaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
This research investigated active biomolecules from the endophytic fungus Aspergillus unguis (CBMAI 2140), isolated from Passiflora incarnata leaves, as potential antibacterial agents against Xanthomonas citri subsp. citri, the causative agent of citrus canker. The fungal extract was obtained via liquid-liquid extraction with ethyl acetate. Antibacterial activity was assessed using the Resazurin Microtiter Assay Plate, determining inhibitory concentrations (IC90) and the minimum bactericidal concentration (MBC). The extract displayed microbicidal activity at 1050 µg ml-¹ and inhibited bacterial growth at 350 µg ml-¹. Fractionation of the extract via normal-phase column chromatography yielded six fractions, with fraction F11 showing the highest antibacterial potential (MBC: 200 µg ml-¹). Nuclear magnetic resonance analysis identified Unguinol as the main compound in F11. Fluorescence microscopy demonstrated rapid permeabilization of the X. citri cell membrane upon exposure to the compound, with significant effects observed after 15-30 min. Although no notable anti-biofilm activity was detected, this study represents the first report of Unguinol's antibacterial activity against Xanthomonas species. These findings highlight its potential for agricultural applications, contributing to sustainable development goal 2.
Collapse
Affiliation(s)
- Eduarda Araujo Dos Santos
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP) 'Julio de Mesquita Filho', Rio Claro, São Paulo 13506-900, Brazil
| | - Vítor Rodrigues Marin
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP) 'Julio de Mesquita Filho', Rio Claro, São Paulo 13506-900, Brazil
| | | | - Henrique Ferreira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP) 'Julio de Mesquita Filho', Rio Claro, São Paulo 13506-900, Brazil
| | - Daiane Cristina Sass
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP) 'Julio de Mesquita Filho', Rio Claro, São Paulo 13506-900, Brazil
| |
Collapse
|
11
|
Al-Murshady AK, Al-Groosh DH. Antimicrobial Effects of Orthodontic Molar Tube Coated with ZnO Nanoparticles Using Electrophoretic Deposition Method: A Randomized Clinical Trial. Appl Biochem Biotechnol 2025; 197:1010-1024. [PMID: 39348081 DOI: 10.1007/s12010-024-05062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to evaluate the antimicrobial effect of coated orthodontic molar tubes (COMT) with zinc oxide nanoparticles (ZnO NPs) using an electrophoretic deposition method (EPD) and to evaluate the orthodontic molar tubes (OMT) bond failure rate. Seventy-two orthodontic molar tubes (OMTs) for second molars were divided into two groups 36 each; one group coated with ZnO NPs and the other control negative uncoated. The OMT was coated using the EPD method with ZnO NPs in a concentration of 10 g/l. The OMTs were randomly allocated using a split-mouth, cross-quadrant design. After 2 weeks of appliance placement, swabs were taken from the surface of the OMTs for microbial assessment against Streptococcus mutans, Lactobacillus acidophilus, and total bacterial counts; additionally, plaque and gingival indices were assessed. The patient was followed for 3 months to evaluate the bond failure rate. The COMT showed a statistically significant reduction in total bacterial accounts, S. mutans, and L. acidophilus compared to UOMT (P < 0.001). Furthermore, the plaque and gingival indices near COMT were significantly less than that of UOMT. The bond failure rate was not significant between the COMT and UOMT. The COMT with ZnO NPs has potent antibacterial activity against the tested pathogens with a reduction in the amount of plaque accumulation. The use of the EPD method was feasible without adverse effects on the orthodontic molar tubes bond failure rate.
Collapse
Affiliation(s)
- Ahmed K Al-Murshady
- Department of Orthodontics, College of Dentistry, University of Baghdad, Bab Al-Muadham, 10047, Baghdad, Iraq.
- Karbala Health Directorate, Ministry of Health, 56001, Karbala, Iraq.
| | - Dheaa H Al-Groosh
- Department of Orthodontics, College of Dentistry, University of Baghdad, Bab Al-Muadham, 10047, Baghdad, Iraq
| |
Collapse
|
12
|
Venkataraman M, Infante V, Sabat G, Sanos-Giles K, Ané JM, Pfleger BF. A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize. ACS Synth Biol 2025; 14:206-215. [PMID: 39707987 PMCID: PMC11747777 DOI: 10.1021/acssynbio.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers. Unfortunately, the mechanisms by which microbes adhere and persist on plant roots are poorly understood, limiting their application. This study examined the membrane proteome shift upon adherence to roots in two bacteria of interest, Klebsiella variicola and Pseudomonas putida. From this surface proteome data, we identified a novel membrane protein from a nonlaboratory isolate of P. putida that increases binding to maize roots using unlabeled proteomics. When this protein was moved from the environmental isolate to a common lab strain (P. putida KT2440), we observed increased binding capabilities of P. putida KT2440 to both abiotic mimic surfaces and maize roots. We observed a similar increased binding capability to maize roots when the protein was heterologously expressed in K. variicola and Stutzerimonas stutzeri. With the discovery of this novel binding protein, we outline a strategy for harnessing natural selection and wild isolates to build more persistent strains of bacteria for field applications and plant growth promotion.
Collapse
Affiliation(s)
- Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Kai Sanos-Giles
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA 53706
- Department of Plant and Agroecosystem Sciences, University of Wisconsin – Madison, Madison, WI, USA 53705
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA 53706
| |
Collapse
|
13
|
Kuznetsova MV, Nesterova LY, Mihailovskaya VS, Selivanova PA, Kochergina DA, Karipova MO, Valtsifer IV, Averkina AS, Starčič Erjavec M. Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: Sensitivity to Chlorhexidine-Based Biocides and Prevalence of Efflux Pump Genes. Int J Mol Sci 2025; 26:355. [PMID: 39796210 PMCID: PMC11721292 DOI: 10.3390/ijms26010355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.07%) and benzalkonium chloride (BAC, 0.055%). The prevalence of efflux pump genes associated with biocide resistance and their relationship to antibiotic resistance was also determined. Both biocides were more effective against Gram-positive S. aureus than Gram-negative bacteria. The most resistant strains were P. aeruginosa strains, which were mainly killed by 0.0016% CHX and by 0.0000084% (CHX)/0.0000066% (BAC) S7. The S7 bactericidal effect was observed on P. aeruginosa and S. aureus after 10 min, while the bactericidal effect of CHX was only observed after 30 min. qacEΔ1 and qacE efflux pump genes were prevalent among E. coli and K. pneumoniae, while mexB was more often detected in P. aeruginosa. norA, norB, mepA, mdeA, and sepA were prevalent in S. aureus. The observed prevalence of efflux pump genes highlights the potential problem whereby the sensitivity of bacteria to biocides could decline rapidly in the future.
Collapse
Affiliation(s)
- Marina V. Kuznetsova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
- Department of Microbiology and Virology, Perm State Medical University Named After Academician E. A. Wagner, 614000 Perm, Russia;
| | - Larisa Y. Nesterova
- Laboratory of Microorganisms’ Adaptation, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia;
| | - Veronika S. Mihailovskaya
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
| | - Polina A. Selivanova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
| | - Darja A. Kochergina
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614081 Perm, Russia; (M.V.K.); (V.S.M.); (P.A.S.); (D.A.K.)
| | - Marina O. Karipova
- Department of Microbiology and Virology, Perm State Medical University Named After Academician E. A. Wagner, 614000 Perm, Russia;
| | - Igor V. Valtsifer
- Department of Multiphase Dispersed System, Institute of Technical Chemistry Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614013 Perm, Russia; (I.V.V.); (A.S.A.)
| | - Anastasia S. Averkina
- Department of Multiphase Dispersed System, Institute of Technical Chemistry Ural Branch Russian Academy of Sciences, Perm Federal Research Centre of Ural Branch of RAS, 614013 Perm, Russia; (I.V.V.); (A.S.A.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
14
|
Rumbaugh KP, Whiteley M. Towards improved biofilm models. Nat Rev Microbiol 2025; 23:57-66. [PMID: 39112554 DOI: 10.1038/s41579-024-01086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 12/13/2024]
Abstract
Biofilms are complex microbial communities that have a critical function in many natural ecosystems, industrial settings as well as in recurrent and chronic infections. Biofilms are highly heterogeneous and dynamic assemblages that display complex responses to varying environmental factors, and those properties present substantial challenges for their study and control. In recent years, there has been a growing interest in developing improved biofilm models to offer more precise and comprehensive representations of these intricate systems. However, an objective assessment for ascertaining the ability of biofilms in model systems to recapitulate those in natural environments has been lacking. In this Perspective, we focus on medical biofilms to delve into the current state-of-the-art in biofilm modelling, emphasizing the advantages and limitations of different approaches and addressing the key challenges and opportunities for future research. We outline a framework for quantitatively assessing model accuracy. Ultimately, this Perspective aims to provide a comprehensive and critical overview of medically focused biofilm models, with the intent of inspiring future research aimed at enhancing the biological relevance of biofilm models.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center and Burn Center of Research Excellence, Lubbock, TX, USA.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Emory Children's Cystic Fibrosis Center, and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Arthur M, Afari EL, Alexa EA, Zhu MJ, Gaffney MT, Celayeta JMF, Burgess CM. Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Compr Rev Food Sci Food Saf 2025; 24:e70083. [PMID: 39736097 DOI: 10.1111/1541-4337.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L. monocytogenes biofilm, as laboratory-based and commercial studies have reported the persistence of this bacterium after cleaning and disinfection. This review systematically examined scientific studies, sourced from the Web of Science, Scopus, and PubMed databases between January 2010 and May 2024, that investigated the effectiveness of the most commonly used biocides in the food industry against L. monocytogenes biofilms. A total of 92 articles which met the screening criteria, were included, with studies utilizing biocides containing sodium hypochlorite, quaternary ammonium compounds, and peroxyacetic acid being predominant. Studies indicated that several key factors may potentially influence biocides' efficacy against L. monocytogenes biofilms. These factors included strain type (persistent, sporadic), serotype, strain origin (clinical, environmental, or food), surface type (biotic or abiotic), surface material (stainless steel, polystyrene, etc.), incubation time (biofilm age) and temperature, presence of organic matter, biocide's active agent, and the co-culture of L. monocytogenes with other bacteria. The induction of the viable but nonculturable (VBNC) state following disinfection is also a critical concern. This review aims to provide a global understanding of how L. monocytogenes biofilms respond to biocides under different treatment conditions, facilitating the development of effective cleaning and disinfection strategies in the food industry.
Collapse
Affiliation(s)
- Michael Arthur
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Edmund Larbi Afari
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Michael T Gaffney
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | | | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
16
|
Chen YS, Chien AS, Li CC, Lin CC, Wu RJ. Effects of Commonly Used Vegetable Oils on Skin Barrier Function and Staphylococcus aureus Biofilm. J Oleo Sci 2025; 74:97-106. [PMID: 39756997 DOI: 10.5650/jos.ess24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Adding of vegetable oils to skincare products or the use of plant oils for oil care is a current trend. Therefore, the safety and functionality of vegetable oils are of great concern to consumers and cosmetics manufacturers. This study focused on three types of vegetable oils: sunflower oil (SO), andiroba oil (AO) and hydrogenated olive oil (HOO). We conducted a comprehensive evaluation of the oils, which encompassed their ability to protect mouse skin keratinocytes (XB-2) and mouse fibroblasts (NIH 3T3) from damage caused by the surfactant sodium lauryl sulfate (SLS), their influence on the levels of filaggrin and collagen, their potential to aid in wound healing, and their effectiveness in anti-Staphylococcus aureus biofilm formation. The results showed that SO, AO and HOO at a concentration of 1.5 × 10-4 % (v/v) have the ability to defend against SLS-induced cell damage, increase wound healing ability and the filaggrin and collagen content to XB-2 or NIH 3T3 cells. SO, AO and HOO at a concentration of 3.75 × 10-3 % also have the anti-biofilm ability. Among the oils, AO can inhibit S. aureus biofilm composed of either polysaccharides or proteins. Therefore, the tested vegetable oils and can be applied to the cosmetics field as ingredients to repair damaged skin and preserve skin barrier stability.
Collapse
Affiliation(s)
- Yi-Shyan Chen
- Department of Cosmetic Science, Providence University
| | - An-Sin Chien
- Department of Cosmetic Science, Providence University
| | - Chih-Ching Li
- Department of Applied Chemistry, Providence University
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital
| | | | - Ren-Jang Wu
- Department of Applied Chemistry, Providence University
| |
Collapse
|
17
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
18
|
Idris AL, Fan X, Li W, Pei H, Muhammad MH, Guan X, Huang T. Galactose-1-phosphate uridylyltransferase GalT promotes biofilm formation and enhances UV-B resistance of Bacillus thuringiensis. World J Microbiol Biotechnol 2024; 40:383. [PMID: 39551829 DOI: 10.1007/s11274-024-04195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Ultraviolet radiation (UV) is a major abiotic stress resulting in relative short duration of Bacillus thuringiensis (Bt) biopesticides in the field, which is expected to be solved by formation of Bt biofilm with higher UV resistance. Therefore, one of the important prerequisite works is to clarify the functions of biofilm-associated genes on biofilm formation and UV resistance of Bt. In this study, comparative genomics and bioinformatic analysis indicated that BTXL6_19475 gene involved in biofilm formation of Bt XL6 was likely to encode a galactose-1-phosphate uridylyltransferase (GalT, E.C. 2.7.7.12). Heterologous expression of the BTXL6_19475 gene in Escherichia coli and detection of its GalT enzyme activity in vitro proved that the gene did encode GalT. Comparing the wild type Bt strain XL6 with galT gene knockout mutant Bt XL6ΔgalT and its complementary strain Bt XL6ΔgalT::19,475, GalT promoted the biofilm formation and enhanced the UV-B resistance of Bt XL6 likely by increasing its D-ribose production and reducing its alanine aryldamidase activity. GalT did not affect the growth and the cell motility of Bt XL6. A regulation map had been proposed to elucidate how GalT promoted biofilm formation and enhanced UV-B resistance of Bt XL6 by the cross-talk between Leloir pathway, Embden-Meyerhof glycolysis pathway and pentose phosphate pathway. Our finding provides a theoretical basis for the efficient use of biofilm genes to improve the UV resistance of Bt biofilms and thus extend field duration of Bt formulations based on biofilm engineering.
Collapse
Affiliation(s)
- Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hankun Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Musa Hassan Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
19
|
Gopalakrishnan V, Saravanan V, Mahendran MIMS, Kumar MPN. Helicobacter pylori biofilm interference by N-acyl homoserine lactonases: in vitro and in silico approaches. Mol Biol Rep 2024; 51:1106. [PMID: 39476276 DOI: 10.1007/s11033-024-10013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Qurom quenching enzyme have an impact on treatment efficacy and prevent the recurrence of Helicobacter pylori biofilm-related infections, although it has not been thoroughly investigated in vitro and in silico. The current study aims to characterize the N-acyl homoserine lactonase, the quorum quenching AiiA protein of Bacillus licheniformis against H. pylori biofilm. METHODS AND RESULTS In this study, AiiA protein were screened for their anti-biofilm activity, was found to effectively control biofilm formation of H. pylori with concentrations ranging from 2 to 10 µg/mL. According to CLSM and COMSTAT analysis, the untreated substratum had the robust biofilm biomass of 25-18 µM and biovolume of 3-4 mm3 /mm2. The total biofilm biovolume and average biofilm thickness were considerably reduced by 40% with a single application of 10 µg/mL of AiiA protein. The biofilm treated with AiiA exhibited a lower urease and polysaccharides than to the untreated biofilm. Further, in silico analysis, exhibited a greater interaction of AiiA against the outer membrane proteins of H. pylori compared to virulence factors. The conserved domains in the binding pockets of AiiA proteins showed a highest binding affinity proving the catalytic activity of the protein. CONCLUSION In this study, the H. pylori biofilm architecture, exopolysaccharide and urease were significantly controlled by our purified N-acyl homoserine lactonase from B. licheniformis. Furthermore, the molecular docking showed the significant interaction between AiiA and key biofilm forming and virulence proteins proved an excellent antibiofilm activity controlling the infections of H. pylori human pathogen.
Collapse
Affiliation(s)
- Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), SBV Campus, Pillayarkuppam, Pondicherry, 607402, India.
| | - Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), SBV Campus, Pillayarkuppam, Pondicherry, 607402, India
| | | | | |
Collapse
|
20
|
Quintana Soares Lopes L, Fortes Guerim PH, Maldonado ME, Wagner R, Hadlich Xavier AC, Gutknecht da Silva JL, Bittencourt da Rosa Leal D, de Freitas Daudt N, Christ Vianna Santos R, Kolling Marquezan P. Chemical composition, cytotoxicity, antimicrobial, antibiofilm, and anti-quorum sensing potential of Mentha Piperita essential oil against the oral pathogen Streptococcus mutans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:824-835. [PMID: 38984907 DOI: 10.1080/15287394.2024.2375731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.
Collapse
Affiliation(s)
- Leonardo Quintana Soares Lopes
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro Henrique Fortes Guerim
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Eduarda Maldonado
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Ana Carolina Hadlich Xavier
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniella Bittencourt da Rosa Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália de Freitas Daudt
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roberto Christ Vianna Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Patrícia Kolling Marquezan
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Rashtchi P, van der Linden E, Habibi M, Abee T. Biofilm formation of Lactiplantibacillus plantarum food isolates under flow and resistance to disinfectant agents. Heliyon 2024; 10:e38502. [PMID: 39397932 PMCID: PMC11466677 DOI: 10.1016/j.heliyon.2024.e38502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Bacterial biofilms formed in food processing environments can be resilient against cleaning and disinfection causing recontamination and spoilage of foods. We investigated the biofilm formation of six Lactiplantibacillus plantarum food spoilage isolates (FBR1-FBR6) using WCFS1 as a reference strain, and examined the impact of benzalkonium chloride (BKC) and peracetic acid (PAA) on planktonic and biofilm cells formed under static and dynamic flow conditions. We used a custom-designed setup composed of a 48-well plate with 0.8 ml culture volumes. We quantified biofilm formation under static and dynamic flow conditions with a flow rate of 3.2 ml/h using plate counting, Crystal Violet (CV) staining, and fluorescence staining techniques. Our findings revealed significant differences in biofilm formation and disinfectant resistance among studied strains and cell types. We observed that flow promoted biofilm formation in some strains and increased the number of culturable cells within biofilms in all strains. Furthermore, biofilm cells demonstrated higher resistance to disinfectants in comparison to planktonic cells for certain strains. Interestingly, cells from dispersed under flow biofilms show higher resistance to disinfectants than cells from static biofilms. The results indicate the importance of flow conditions in influencing L. plantarum food isolates biofilm formation and disinfection resistance, which may have implications for product contamination and spoilage risks.
Collapse
Affiliation(s)
- P. Rashtchi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - E. van der Linden
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - M. Habibi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - T. Abee
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| |
Collapse
|
22
|
Liao H, Yan X, Wang C, Huang C, Zhang W, Xiao L, Jiang J, Bao Y, Huang T, Zhang H, Guo C, Zhang Y, Pu Y. Cyclic di-GMP as an antitoxin regulates bacterial genome stability and antibiotic persistence in biofilms. eLife 2024; 13:RP99194. [PMID: 39365286 PMCID: PMC11452175 DOI: 10.7554/elife.99194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Biofilms are complex bacterial communities characterized by a high persister prevalence, which contributes to chronic and relapsing infections. Historically, persister formation in biofilms has been linked to constraints imposed by their dense structures. However, we observed an elevated persister frequency accompanying the stage of cell adhesion, marking the onset of biofilm development. Subsequent mechanistic studies uncovered a comparable type of toxin-antitoxin (TA) module (TA-like system) triggered by cell adhesion, which is responsible for this elevation. In this module, the toxin HipH acts as a genotoxic deoxyribonuclease, inducing DNA double strand breaks and genome instability. While the second messenger c-di-GMP functions as the antitoxin, exerting control over HipH expression and activity. The dynamic interplay between c-di-GMP and HipH levels emerges as a crucial determinant governing genome stability and persister generation within biofilms. These findings unveil a unique TA system, where small molecules act as the antitoxin, outlining a biofilm-specific molecular mechanism influencing genome stability and antibiotic persistence, with potential implications for treating biofilm infections.
Collapse
Affiliation(s)
- Hebin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Translational Medicine Research Center, North Sichuan Medical CollegeNanchongChina
| | - Xiaodan Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chenyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chun Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Jun Jiang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Yongjia Bao
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Tao Huang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Hanbo Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Chunming Guo
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Taikang Center for Life and Medical Sciences, Wuhan UniversityWuhanChina
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan UniversityWuhanChina
- Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
- Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology, State Key Laboratory of Virology and Medical Research Institute, Wuhan University School of Basic Medical SciencesWuhanChina
| |
Collapse
|
23
|
Bhamare SA, Dahake PT, Kale YJ, Dadpe MV, Kendre SB. Effect of Herbal Extract of Spilanthes acmella and Cinnamon Oil on Enterococcus faecalis Biofilm Eradication: An In Vitro Study. Int J Clin Pediatr Dent 2024; 17:1004-1013. [PMID: 39664834 PMCID: PMC11628687 DOI: 10.5005/jp-journals-10005-2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Introduction Enterococcus faecalis has a pathogenic role in failed endodontic treatments. The study aimed to assess the efficiency of Spilanthes acmella (SA) and cinnamon oil (CO) extract on E. faecalis biofilm eradication. Materials and methods The antibacterial efficacy of SA and CO against E. faecalis was assessed by the tests of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and further, the interaction with agents was evaluated at different time intervals by a time-kill assay. The inhibition efficacy of both agents was determined by biofilm adhesion reduction crystal violet assay. Results The MIC of SA was 25 μg/mL, and for CO, it was 12.5 μg/mL. The time-kill assay revealed that antibacterial efficacy was identified till 36 hours by both the test materials. The mean biofilm reduction at 25 µg/mL of calcium hydroxide [Ca(OH)2], SA, and CO was 1.53 ± 0.05, 1.83 ± 1.57, and 2.06 ± 0.05, respectively. Conclusion SA and CO demonstrated promising antibacterial efficacy against E. faecalis and CO presented significant eradication of biofilms compared to SA. How to cite this article Bhamare SA, Dahake PT, Kale YJ, et al. Effect of Herbal Extract of Spilanthes acmella and Cinnamon Oil on Enterococcus faecalis Biofilm Eradication: An In Vitro Study. Int J Clin Pediatr Dent 2024;17(9):1004-1013.
Collapse
Affiliation(s)
- Shruti A Bhamare
- Department of Pedodontics and Preventive Dentistry, Maharashtra Institute of Dental Sciences and Research (MIDSR), Latur, Maharashtra, India
| | - Prasanna T Dahake
- Department of Pedodontics and Preventive Dentistry, Maharashtra Institute of Dental Sciences and Research (MIDSR), Latur, Maharashtra, India
| | - Yogesh J Kale
- Department of Pedodontics and Preventive Dentistry, Maharashtra Institute of Dental Sciences and Research (MIDSR), Latur, Maharashtra, India
| | - Mahesh V Dadpe
- Department of Pedodontics and Preventive Dentistry, Maharashtra Institute of Dental Sciences and Research (MIDSR), Latur, Maharashtra, India
| | - Shrikant B Kendre
- Department of Pedodontics and Preventive Dentistry, Maharashtra Institute of Dental Sciences and Research (MIDSR), Latur, Maharashtra, India
| |
Collapse
|
24
|
Atac N, Gunduz H, Koc I, Onbasli K, Khan M, Savani S, Sennaroglu A, Can F, Acar HY, Kolemen S. Selective antibacterial and antibiofilm activity of chlorinated hemicyanine against gram-positive bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124324. [PMID: 38676983 DOI: 10.1016/j.saa.2024.124324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Antibiotic-free therapies are highly needed due to the limited success of conventional approaches especially against biofilm related infections. In this direction, antimicrobial phototherapy, either in the form of antimicrobial photothermal therapy (aPTT) or antimicrobial photodynamic therapy (aPDT), have appeared to be highly promising candidates in recent years. These are local and promising approaches for antibiotic resistant bacterial infections and biofilms. Organic small photosensitizers (PSs) are extensively preferred in antimicrobial phototherapy applications as they offer a great opportunity to combine therapeutic action (aPTT, aPDT or both) with fluorescence imaging on a single molecule. In this study, the bactericidal effect of cationic chlorinated hemicyanine (Cl-Hem)-based type I PS, which can function as a dual aPDT/aPTT agent, was investigated on both planktonic cells and biofilms of different gram-positive (E. faecalis and S. epidermidis) and gram-negative bacteria (P. aeruginosa and K. pneumoniae) with and without 640 nm laser irradiation. Cl-Hem was shown to induce a selective phototheranostic activity against gram-positive bacteria (E. faecalis and S. epidermidis). Cl-Hem exhibited both dose and laser irradiation time dependent bactericidal effect on planktonic and biofilms of S. epidermidis. These results clearly showed that highly potent Cl-Hem can treat resistant microbial infections, while allowing fluorescence detection at the same time. High biofilm reduction observed with combined aPDT/aPTT action of Cl-Hem together with its non-cytotoxic nature points out that Cl-Hem is a promising PS for antibacterial and antibiofilm treatments.
Collapse
Affiliation(s)
- Nazli Atac
- Koç University, School of Medicine, Medical Microbiology, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Koç University-İşbank Center for Infectious Diseases (KUISCID), Topkapı, Istanbul, Turkiye
| | - Hande Gunduz
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Nanofabrication and Nanocharacterization Centre for Scientific and Technological Advanced Research, Koç University, Istanbul, Turkiye
| | - Irem Koc
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Kubra Onbasli
- Istanbul Technical University, Department of Metallurgical and Materials Engineering, Istanbul, Turkiye
| | - Minahil Khan
- Koç University, Department of Physics, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Samira Savani
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Alphan Sennaroglu
- Koç University, Department of Physics, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Koç University, Department of Electrical and Electronics Engineering, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Fusun Can
- Koç University, School of Medicine, Medical Microbiology, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Koç University-İşbank Center for Infectious Diseases (KUISCID), Topkapı, Istanbul, Turkiye.
| | - Havva Yagci Acar
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye.
| | - Safacan Kolemen
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye.
| |
Collapse
|
25
|
Power AD, Mok WWK. Agar and agarose used for Staphylococcus aureus biofilm cultivation impact fluoroquinolone tolerance. J Appl Microbiol 2024; 135:lxae191. [PMID: 39066496 PMCID: PMC11301810 DOI: 10.1093/jambio/lxae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen whose treatment is further complicated by its ability to form biofilms. In this study, we examine the impact of growing S. aureus biofilms on different polymerizing surfaces, specifically agar and agarose, on the pathogen's tolerance to fluoroquinolones. METHODS AND RESULTS Biofilms of two methicillin-resistant strains of S. aureus were grown on agar or agarose in the presence of the same added nutrients, and their antibiotic susceptibility to two fluoroquinolones, moxifloxacin (MXF) and delafloxacin (DLX), were measured. We also compared the metabolism and extracellular polymeric substances (EPS) production of biofilms that were grown on agar and agarose. CONCLUSIONS Biofilms that were grown on agarose were consistently more susceptible to antibiotics than those grown on agar. We found that in biofilms that were grown on agar, extracellular protein composition was higher, and adding EPS to agarose-grown biofilms increased their tolerance to DLX to levels that were comparable to agar-grown biofilms.
Collapse
Affiliation(s)
- Angela D Power
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, United States
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, United States
| |
Collapse
|
26
|
Jiang G, Wang C, Wang Y, Wang J, Xue Y, Lin Y, Hu X, Lv Y. Exogenous putrescine plays a switch-like influence on the pH stress adaptability of biofilm-based activated sludge. Appl Environ Microbiol 2024; 90:e0056924. [PMID: 38916292 PMCID: PMC11267902 DOI: 10.1128/aem.00569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.
Collapse
Affiliation(s)
- Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yongchao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Jiayi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yimei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yuting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Xurui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yahui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| |
Collapse
|
27
|
Bilská K, Bujdák J, Bujdáková H. Nanocomposite system with photoactive phloxine B eradicates resistant Staphylococcus aureus. Heliyon 2024; 10:e33660. [PMID: 39071577 PMCID: PMC11283154 DOI: 10.1016/j.heliyon.2024.e33660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Nanomaterials modified with hybrid films functionalized with photoactive compounds can be an effective system to prevent and eradicate biofilms on medical devices. The aim of this research was to extend current knowledge on nanomaterial comprised of polyurethane (PU) modified with a nanocomposite film of organoclay with the functionalized photosensitizer (PS) phloxine B (PhB). Particles of the clay mineral saponite were, at first modified by octadecyltrimethylammonium cations to activate the surface for PhB adsorption. The colloids were filtered to get silicate films on polytetrafluoroethylene membrane filters, which were layered with a liquid mixture of PU precursors. The penetration of PU into the silicate formed a thin nanocomposite film. This nanomaterial demonstrated excellent effectiveness against methicillin-resistant S. aureus (MRSA) resistant to fluoroquinolones (L12 and S61, respectively). It showed more than 1000- and 10 000-fold inhibition of biofilm growth after irradiation with green laser compared to the unmodified PU material. Principal component analysis and multiple linear regression showed that the effectiveness of the nanomaterial was not influenced by virulence factors such as the expression of efflux pumps of the Nor family, the adhesin PIA encoded by the icaADBC operon or the robustness of the biofilms. However, the presence of organoclay, PhB and irradiation had a significant effect on the anti-biofilm properties of the nanocomposite. The anti-microbial properties of the material were strengthened after irradiation, because of high reactive oxygen species release (more than 14-fold compared to non-irradiated sample). Materials based on photoactive molecules can represent a worthwhile pathway towards the development of more complex nanomaterials applicable in various fields of medicine.
Collapse
Affiliation(s)
- Katarína Bilská
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovičova 6, 84215, Bratislava, Slovak Republic
| | - Juraj Bujdák
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Ilkovičova 6, 84215, Bratislava, Slovak Republic
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536, Bratislava, Slovak Republic
| | - Helena Bujdáková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Ilkovičova 6, 84215, Bratislava, Slovak Republic
| |
Collapse
|
28
|
Namuga C, Muwonge H, Nasifu K, Sekandi P, Sekulima T, Kirabira JB. Hoslundia opposita vahl; a potential source of bioactive compounds with antioxidant and antibiofilm activity for wound healing. BMC Complement Med Ther 2024; 24:236. [PMID: 38886717 PMCID: PMC11181642 DOI: 10.1186/s12906-024-04540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Biofilms and oxidative stress retard wound healing. The resistance of biofilms to antibiotics has led to a search for alternative approaches in biofilm elimination. Antioxidants work synergistically with antibacterial agents against biofilms. Hence recent research has suggested plants as candidates in the development of new alternatives in biofilm treatments and as antioxidants due to the presence of phytocompounds which are responsible for their bioactivities. Hoslundia opposita Vahl is one of the plants used by traditional healers to treat wounds and other infections, this makes it a potential candidate for drug discovery hence, in this study, we investigate the antibiofilm and antioxidant activity of methanolic extract of hoslundia opposita Vahl from Uganda. We also identify phytochemicals responsible for its bioactivity. METHOD the plant was extracted by maceration using methanol, and the extract was investigated for antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. The antibiofilm activity using microtiter plate assay (MTP) assay where the Minimum biofilm inhibitory concentration required to inhibit 50% or 90% of the biofilm (MBIC50 and MBIC90) and Minimum biofilm eradication concentration required to remove 50% or 90% of the biofilm (MBEC50 and MBEC90) were measured. It was further analysed for its phytochemical composition using quantitative screening, as well as Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography mass-spectrometry (LC-MS). RESULTS H. Opposita Vahl extract showed good antioxidant activity with of 249.6 mg/mL. It inhibited the growth of P. aeruginosa and S. aureus biofilms with MBIC50 of 28.37 mg/mL and 10 mg/mL, respectively. It showed the ability to eradicate P. aeruginosa and S. aureus biofilms with MBEC50 of 23.85 and 39.01 mg/mL respectively. Phytochemical analysis revealed the presence of alkaloids, tannins, flavonoids, and phenols. GC-MS analysis revealed 122 compounds in the extract of which, 23 have evidence of antioxidant or antibiofilm activity in literature. The most abundant compounds were; 1,4- Citric acid, Tetracontane-1,40-diol (43.43.3%, 1, Olean-12-en-28-oic acid, 3-hydroxy-, methyl ester, (3.beta) (15.36%) 9-Octadecenamide (12.50%), Squalene (11.85%) Palmitic Acid 4TMS (11.28%), and alpha Amyrin (11.27%). The LC-MS identified 115 and 57 compounds in multiple reaction mode (MRM) and scan modes respectively. CONCLUSION H. opposita Vahl showed antibiofilm and antioxidant activity due to bioactive compounds identified, hence the study justifies its use for wound healing. It can be utilised in further development of new drugs as antibiofilm and antioxidants.
Collapse
Affiliation(s)
- Catherine Namuga
- Depatment of Polymer, Textile, and Industrial Engineering, Busitema University, P. O. Box 256, Tororo, Uganda.
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Haruna Muwonge
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Kerebba Nasifu
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Peter Sekandi
- Department of Microbiology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Tahalu Sekulima
- Department of Mechanical Engineering, College of Engineering, Design, Art, and Technology, Makerere University, Kampala, Uganda
| | - John Baptist Kirabira
- Department of Physiology, College of Health Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
29
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Chen W, Han LM, Chen XZ, Yi PC, Li H, Ren YY, Gao JH, Zhang CY, Huang J, Wang WX, Hu ZL, Hu CM. Engineered endolysin of Klebsiella pneumoniae phage is a potent and broad-spectrum bactericidal agent against "ESKAPEE" pathogens. Front Microbiol 2024; 15:1397830. [PMID: 38784808 PMCID: PMC11112412 DOI: 10.3389/fmicb.2024.1397830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The rise of antimicrobial resistance in ESKAPEE pathogens poses significant clinical challenges, especially in polymicrobial infections. Bacteriophage-derived endolysins offer promise in combating this crisis, but face practical hurdles. Our study focuses on engineering endolysins from a Klebsiella pneumoniae phage, fusing them with ApoE23 and COG133 peptides. We assessed the resulting chimeric proteins' bactericidal activity against ESKAPEE pathogens in vitro. ApoE23-Kp84B (CHU-1) reduced over 3 log units of CFU for A. baumannii, E. faecalis, K. pneumoniae within 1 h, while COG133-Kp84B (CHU-2) showed significant efficacy against S. aureus. COG133-L1-Kp84B, with a GS linker insertion in CHU-2, exhibited outstanding bactericidal activity against E. cloacae and P. aeruginosa. Scanning electron microscopy revealed alterations in bacterial morphology after treatment with engineered endolysins. Notably, CHU-1 demonstrated promising anti-biofilm and anti-persister cell activity against A. baumannii and E. faecalis but had limited efficacy in a bacteremia mouse model of their coinfection. Our findings advance the field of endolysin engineering, facilitating the customization of these proteins to target specific bacterial pathogens. This approach holds promise for the development of personalized therapies tailored to combat ESKAPEE infections effectively.
Collapse
Affiliation(s)
- Wei Chen
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Mei Han
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiu-Zhen Chen
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng-Cheng Yi
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun-Yao Ren
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Han Gao
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Cai-Yun Zhang
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Huang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Xiao Wang
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Liang Hu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chun-Mei Hu
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Innovation Center for Infectious Diseases of Jiangsu Province, Nanjing, China
| |
Collapse
|
31
|
Thadtapong N, Chaturongakul S, Napaswad C, Dubbs P, Soodvilai S. Enhancing effect of natural adjuvant, panduratin A, on antibacterial activity of colistin against multidrug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:9863. [PMID: 38684853 PMCID: PMC11059350 DOI: 10.1038/s41598-024-60627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Colistin- and carbapenem-resistant Acinetobacter baumannii is a serious multidrug resistant (MDR) bacterium in clinical settings. Discovery of new antibacterial drugs against MDR is facing multiple challenges in drug development. Combination of known antibiotics with a robust adjuvant might be an alternative effective strategy for MDR treatment. In the study herein, we report an antibiotic adjuvant activity of a natural compound panduratin A from fingerroot (Boesenbergia rotunda) as a potent adjuvant to colistin. The present study investigated the antibiotic adjuvant effect of panduratin A against 10 colistin- and carbapenem-resistant A. baumannii. Antibacterial activities were tested by broth microdilution method. Biofilm assay was used to determine the efficacy of panduratin A in biofilm formation inhibition on two representative strains Aci46 and Aci44. Genomic and transcriptomic analyses of colistin- and carbapenem-resistant A. baumannii strains were used to identify potential resistance and tolerance mechanism in the bacteria. Panduratin A-colistin combination showed an increased effect on antibacterial in the A. baumannii. However, panduratin A did not improve the antibacterial activity of imipenem. In addition, panduratin A improves anti-biofilm activity of colistin against Aci44 and Aci46, the colistin- and carbapenem-resistant A. baumannii. Panduratin A markedly enhances bactericidal and anti-biofilm activity of colistin against colistin- resistant A. baumannii. Based on genome comparisons, single nucleotide polymorphism (SNP) patterns in six genes encoding biofilm and lipid A biosynthesis were shared in Aci44 and Aci46. In Aci44, we identified a partial sequence of pmrB encoding a polymyxin resistant component PmrB, whereas a full length of pmrB was observed in Aci46. RNA-seq analyses of Aci44 revealed that panduratin A-colistin combination induced expression of ribosomal proteins and oxidative stress response proteins, whereas iron transporter and MFS-type transporter systems were suppressed. Panduratin A-colistin combination could promote intracellular reactive oxygen species (ROS) accumulation could lead to the cidal effect on colistin-resistant A. baumannii. Combination of panduratin A and colistin showed a significant increase in colistin efficacy against colistin- resistant A. baumannii in comparison of colistin alone. Genomic comparison between Aci44 and Aci46 showed mutations and SNPs that might affect different phenotypes. Additionally, based on RNA-Seq, panduratin A-colistin combination could lead to ROS production and accumulation. These findings confirmed the potency of panduratin as colistin adjuvant against multidrug resistant A. baumannii.
Collapse
Affiliation(s)
- Nalumon Thadtapong
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chanita Napaswad
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
32
|
Gricajeva A, Buchovec I, Kalėdienė L, Badokas K, Vitta P. Evaluation of visible light and natural photosensitizers against Staphylococcus epidermidis and Staphylococcus saprophyticus planktonic cells and biofilm. Heliyon 2024; 10:e28811. [PMID: 38596007 PMCID: PMC11002230 DOI: 10.1016/j.heliyon.2024.e28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Antimicrobial photoinactivation (API) has shown some promise in potentially treating different nosocomial bacterial infections, however, its application on staphylococci, especially other than Staphylococcus aureus or methicillin-resistant S. aureus (MRSA) species is still limited. Although S. aureus is a well-known and important nosocomial pathogen, several other species of the genus, particularly coagulase-negative Staphylococcus (CNS) species such as Staphylococcus epidermidis and Staphylococcus saprophyticus, can also cause healthcare-associated infections and foodborne intoxications. CNS are often involved in resilient biofilm formation on medical devices and can cause infections in patients with compromised immune systems or those undergoing invasive procedures. In this study, the effects of chlorophyllin and riboflavin-mediated API on S. epidermidis and S. saprophyticus planktonic cells and biofilm are demonstrated for the first time. Based on the residual growth determination and metabolic reduction ability changes, higher inactivating efficiency of chlorophyllin-mediated API was determined against the planktonic cells of both tested species of bacteria and against S. saprophyticus biofilm. Some insights on whether aqueous solutions of riboflavin and chlorophyllin, when illuminated with optimal exciting wavelength (440 nm and 402 nm, respectively) generate O2-•, are also provided in this work.
Collapse
Affiliation(s)
- Alisa Gricajeva
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Sauletekio avenue 7, LT-10257, Vilnius, Lithuania
| | - Irina Buchovec
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| | - Lilija Kalėdienė
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Sauletekio avenue 7, LT-10257, Vilnius, Lithuania
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| | - Pranciškus Vitta
- Institute of Photonics and Nanotechnology, Faculty of Physics, Sauletekio avenue 3, LT-10257, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
33
|
Levy IK, Salustro D, Battaglini F, Lizarraga L, Murgida DH, Agusti R, D’Accorso N, Raventos Segura D, González Palmén L, Negri RM. Quantification of Enzymatic Biofilm Removal Using the Sauerbrey Equation: Application to the Case of Pseudomonas protegens. ACS OMEGA 2024; 9:10445-10458. [PMID: 38463305 PMCID: PMC10918834 DOI: 10.1021/acsomega.3c08475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
A methodology for the quantitative analysis of enzymatic removal of biofilms (BF) was developed, based on a quartz crystal microbalance (QCM) under stationary conditions. This was applied to the case of Pseudomonas protegens (PP) BFs, through a series of five enzymes, whose removal activity was screened using the presented methodology. The procedure is based on the following: when BFs can be modeled as rigid materials, QCM can be used as a balance under stationary conditions for determining the BFs mass reduction by enzymatic removal. For considering a BF as a rigid model, energy dissipation effects, associated with viscoelastic properties of the BF, must be negligible. Hence, a QCM system with detection of dissipation (referred to as QCM with dissipation) was used for evaluating the energy losses, which, in fact, resulted in negligible energy losses in the case of dehydrated PP BFs, validating the application of the Sauerbrey equation for the change of mass calculations. The stationary methodology reduces operating times and simplifies data analysis in comparison to dynamic approaches based on flow setups, which requires the incorporation of dissipation effects due to the liquid media. By carrying out QCM, glycosidase-type enzymes showed BF removal higher than 80% at enzyme concentration 50 ppm, reaching removal over 90% in the cases of amylase and cellulase/xylanase enzymes. The highest removal percentage produced a reduction from about 15 to 1 μg in the BF mass. Amylase enzyme was tested from below 50 to 1 ppm, reaching around 60% of removal at 1 ppm. The obtained results were supported by other instrumental techniques such as Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, high performance anion exchange chromatography, thermogravimetric analysis, and differential scanning calorimetry. The removal quantifications obtained with QCM were compared with those obtained by well-established screening techniques (UV-vis spectrophotometry using crystal violet and agar diffusion test). The proposed methodology expands the possibility of using a quartz microbalance to perform enzymatic activity screening.
Collapse
Affiliation(s)
- Ivana K. Levy
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Débora Salustro
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Leonardo Lizarraga
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
- Centro
de Investigación en Bionanociencias (CIBION), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
| | - Daniel H. Murgida
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosalía Agusti
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Norma D’Accorso
- Centro
de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET),
Universidad de Buenos Aires, Buenos
Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Orgánica,
Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | | | | | - R. Martín Negri
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE). Consejo Nacional de Investigaciones Científicas
y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
- Universidad
de Buenos Aires (UBA), Departamento de Química Inorgánica,
Analítica y Química Física. Facultad de Ciencias
Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
34
|
Wu Z, Song J, Zhang Y, Yuan X, Zhao J. Inhibitory and preventive effects of Arnebia euchroma (Royle) Johnst. root extract on Streptococcus mutans and dental caries in rats. BDJ Open 2024; 10:15. [PMID: 38431610 PMCID: PMC10908817 DOI: 10.1038/s41405-024-00196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Dental caries is one of the prevalent conditions that threaten oral health. Arnebia euchroma (Royle) Johnst. root (AR) extracts exhibit anti-inflammatory, anti-cancer, and antibacterial properties. This study was designed to investigate the antibacterial impact of AR extract on Streptococcus mutans (S. mutans) UA159 and the anti-caries effect on rats. METHODS The antibacterial activity of AR extract against S. mutans and its biofilm was determined using the bacterial sensitivity test, the biofilm sensitivity test, and the live-dead staining technique. By fluorescently tagging bacteria, the influence of bacterial adhesion rate was determined. Using a rat caries model, the anti-caries efficacy and safety of AR extract were exhaustively investigated in vivo. RESULTS AR extract inhibit not only the growth of S. mutans, but also the generation of S. mutans biofilm, hence destroying and eliminating the biofilm. Moreover, AR extract were able to inhibit S. mutans' adherence to saliva-encapsulated hydroxyapatite (HAP). Further, in a rat model of caries, the AR extract is able to greatly reduce the incidence and severity of caries lesions on the smooth surface and pit and fissure of rat molars, while exhibiting excellent biosafety. CONCLUSIONS AR extract exhibit strong antibacterial activity against S. mutans and can lower the incidence and severity of dental cavities in rats. These findings suggest that Arnebia euchroma (Royle) Johnst. could be utilized for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Jie Song
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Yangyang Zhang
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Xiyu Yuan
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China
| | - Jin Zhao
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi, 830054, People's Republic of China.
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi, 830054, People's Republic of China.
| |
Collapse
|
35
|
Zaffar R, Nazir R, Rather MA, Dar R. Biofilm formation and EPS production enhances the bioremediation potential of Pseudomonas species: a novel study from eutrophic waters of Dal lake, Kashmir, India. Arch Microbiol 2024; 206:89. [PMID: 38308703 DOI: 10.1007/s00203-023-03817-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
The present study was conducted with the aim of isolation and identification of the biofilm-forming denitrifying Pseudomonas bacterial strains from eutrophic waters of Dal lake, India, followed by the study of inter-relation of biofilm formation and denitrification potential of Pseudomonas strains. The bacterial strains were characterized by morphological observations and identified using 16S rDNA sequencing followed by the quantification of biofilm formation of these st by crystal violet (CV) assay using 96-well microtiter plate and extracellular polymeric substance (EPS) extraction. Lastly, the nitrate-reducing potential of all Pseudomonas species was studied. Our evaluation revealed that four different Pseudomonas species were observed to have the biofilm-forming potential and nitrate-reducing properties and the species which showed maximum biofilm-forming potential and maximum EPS production exhibited higher nitrate-removing capacity. Moreover, P. otitis was observed to have the highest denitrification capacity (89%) > P. cedrina (83%) > P. azotoform (79%) and the lowest for P. peli (70%). These results clearly signify a positive correlation of biofilm-forming capacity and nitrate-removing ability of Pseudomonas species. This study has for the first time successfully revealed the bioremediation potential of P. otitis, P. cedrina, P. azotoform, and P. peli species, thus contributing to the growing list of known nitrate-reducing Pseudomonas species. Based upon the results, these strains can be extrapolated to nitrate-polluted water systems for combating water pollution.
Collapse
Affiliation(s)
- Riasa Zaffar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India.
| | - Mushtaq Ahmad Rather
- Energy Engineering Lab, Department of Chemical Engineering, National Institute of Technology (NIT), Srinagar, J&K, India
| | - Rubiya Dar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
36
|
Paesa M, Almazán F, Yus C, Sebastián V, Arruebo M, Gandía LM, Reinoso S, Pellejero I, Mendoza G. Gold Nanoparticles Capped with a Novel Titanium(IV)-Containing Polyoxomolybdate Cluster: Selective and Enhanced Bactericidal Effect Against Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305169. [PMID: 37797194 DOI: 10.1002/smll.202305169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Bacterial infections are a public health threat of increasing concern in medical care systems; hence, the search for novel strategies to lower the use of antibiotics and their harmful effects becomes imperative. Herein, the antimicrobial performance of four polyoxometalate (POM)-stabilized gold nanoparticles (Au@POM) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as Gram-negative and Gram-positive bacteria models, respectively, is studied. The bactericidal studies performed, both in planktonic and sessile forms, evidence the antimicrobial potential of these hybrid nanostructures with selectivity toward Gram-negative species. In particular, the Au@GeMoTi composite with the novel [Ti2 (HGeMo7 O28 )2 ]10- POM capping ligand exhibits outstanding bactericidal efficiency with a minimum inhibitory concentration of just 3.12 µm for the E. coli strain, thus outperforming the other three Au@POM counterparts. GeMoTi represents the fourth example of a water-soluble TiIV -containing polyoxomolybdate, and among them, the first sandwich-type structure having heteroatoms in high-oxidation state. The evaluation of the bactericidal mechanisms of action points to the cell membrane hyperpolarization, disruption, and subsequent nucleotide leakage and the low cytotoxicity exerted on five different cell lines at antimicrobial doses demonstrates the antibiotic-like character. These studies highlight the successful design and development of a new POM-based nanomaterial able to eradicate Gram-negative bacteria without damaging mammalian cells.
Collapse
Affiliation(s)
- Mónica Paesa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza, 50018, Spain
| | - Fernando Almazán
- Instituto de Materiales Avanzados y Matemáticas (INAMAT2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, 31006, Spain
- Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Edificio los Acebos, Campus de Arrosadia, Pamplona, 31006, Spain
| | - Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza, 50018, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza, 50018, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, 28029, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, Zaragoza, 50018, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, 28029, Spain
| | - Luis M Gandía
- Instituto de Materiales Avanzados y Matemáticas (INAMAT2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, 31006, Spain
- Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Edificio los Acebos, Campus de Arrosadia, Pamplona, 31006, Spain
| | - Santiago Reinoso
- Instituto de Materiales Avanzados y Matemáticas (INAMAT2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, 31006, Spain
- Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Edificio los Acebos, Campus de Arrosadia, Pamplona, 31006, Spain
| | - Ismael Pellejero
- Instituto de Materiales Avanzados y Matemáticas (INAMAT2), Universidad Pública de Navarra (UPNA), Edificio Jerónimo de Ayanz, Campus de Arrosadia, Pamplona, 31006, Spain
- Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Edificio los Acebos, Campus de Arrosadia, Pamplona, 31006, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, 28029, Spain
| |
Collapse
|
37
|
Rhodes KA, Rendón MA, Ma MC, Agellon A, Johnson AC, So M. Type IV pilus retraction is required for Neisseria musculi colonization and persistence in a natural mouse model of infection. mBio 2024; 15:e0279223. [PMID: 38084997 PMCID: PMC10790696 DOI: 10.1128/mbio.02792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal Neisseria, N. musculi, in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal Neisseria with their human host due to the relatedness of these species.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - María A. Rendón
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew C.E. Johnson
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Magdalene So
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
38
|
Boudehen YM, Tasrini Y, Aguilera-Correa JJ, Alcaraz M, Kremer L. Silencing essential gene expression in Mycobacterium abscessus during infection. Microbiol Spectr 2023; 11:e0283623. [PMID: 37831478 PMCID: PMC10714871 DOI: 10.1128/spectrum.02836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.
Collapse
Affiliation(s)
- Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
39
|
Danforth DR, Melloni M, Thorpe R, Cohen A, Voogt R, Tristano J, Mintz KP. Dual function of the O-antigen WaaL ligase of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2023; 38:471-488. [PMID: 37941494 PMCID: PMC10758912 DOI: 10.1111/omi.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Protein glycosylation is critical to the quaternary structure and collagen-binding activity of the extracellular matrix protein adhesin A (EmaA) associated with Aggregatibacter actinomycetemcomitans. The glycosylation of this large, trimeric autotransporter adhesin is postulated to be mediated by WaaL, an enzyme with the canonical function to ligate the O-polysaccharide (O-PS) antigen with a terminal sugar of the lipid A-core oligosaccharide of lipopolysaccharide (LPS). In this study, we have determined that the Escherichia coli waaL ortholog (rflA) does not restore collagen binding of a waaL mutant strain of A. actinomycetemcomitans but does restore O-PS ligase activity following transformation of a plasmid expressing waaL. Therefore, a heterologous E. coli expression system was developed constituted of two independently replicating plasmids expressing either waaL or emaA of A. actinomycetemcomitans to directly demonstrate the necessity of ligase activity for EmaA collagen binding. Proper expression of the protein encoded by each plasmid was characterized, and the individually transformed strains did not promote collagen binding. However, coexpression of the two plasmids resulted in a strain with a significant increase in collagen binding activity and a change in the biochemical properties of the protein. These results provide additional data supporting the novel hypothesis that the WaaL ligase of A. actinomycetemcomitans shares a dual role as a ligase in LPS biosynthesis and is required for collagen binding activity of EmaA.
Collapse
Affiliation(s)
- David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Marcella Melloni
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Richard Thorpe
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Avi Cohen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Richard Voogt
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| |
Collapse
|
40
|
Subakaeva E, Zelenikhin P, Sokolova E, Pergat A, Aleksandrova Y, Shurpik D, Stoikov I. The Synthesis and Antibacterial Properties of Pillar[5]arene with Streptocide Fragments. Pharmaceutics 2023; 15:2660. [PMID: 38140001 PMCID: PMC10747162 DOI: 10.3390/pharmaceutics15122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The growing problem of bacterial resistance to antimicrobials actualizes the development of new approaches to solve this challenge. Supramolecular chemistry tools can overcome the limited bacterial resistance and side effects of classical sulfonamides that hinder their use in therapy. Here, we synthesized a number of pillar[5]arenes functionalized with different substituents, determined their ability to self-association using DLS, and characterized antimicrobial properties against S. typhimurium, K. pneumoniae, P. aeruginosa, S. epidermidis, S. aureus via a resazurin test. Biofilm prevention concentration was calculated for an agent with established antimicrobial activity by the crystal-violet staining method. We evaluated the mutagenicity of the macrocycle using the Ames test and its ability to affect the viability of A549 and LEK cells in the MTT-test. It was shown that macrocycle functionalized with sulfonamide residues exhibited antimicrobial activity an order higher than pure streptocide and also revealed the ability to prevent biofilm formation of S. aureus and P. aeruginosa. The compound did not show mutagenic activity and exhibited low toxicity to eukaryotic cells. The obtained results allow considering modification of the macrocyclic platforms with classic antimicrobials as an opportunity to give them a "second life" and return to practice with improved properties.
Collapse
Affiliation(s)
- Evgenia Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (E.S.); (E.S.)
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (E.S.); (E.S.)
| | - Evgenia Sokolova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (E.S.); (E.S.)
| | - Arina Pergat
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| | - Yulia Aleksandrova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| | - Dmitriy Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 29, 420008 Kazan, Russia; (A.P.); (Y.A.); (D.S.)
| |
Collapse
|
41
|
Kumar A, Saha SK, Banerjee P, Prasad K, Sengupta TK. Antibiotic-Induced Biofilm Formations in Pseudomonas aeruginosa Strains KPW.1-S1 and HRW.1-S3 are Associated with Increased Production of eDNA and Exoproteins, Increased ROS Generation, and Increased Cell Surface Hydrophobicity. Curr Microbiol 2023; 81:11. [PMID: 37978089 DOI: 10.1007/s00284-023-03495-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
Pseudomonas aeruginosa is a medically important opportunistic pathogen due to its intrinsic ability to form biofilms on different surfaces as one of the defense mechanisms for survival. The fact that it can form biofilms on various medical implants makes it more harmful clinically. Although various antibiotics are used to treat Pseudomonas aeruginosa infections, studies have shown that sub-MIC levels of antibiotics could induce Pseudomonas biofilm formation. The present study thus explored the effect of the aminoglycoside antibiotic gentamicin on the biofilm dynamics of two Pseudomonas aeruginosa strains KPW.1-S1 and HRW.1-S3. Biofilm formation was found to be increased in the presence of increased concentrations of gentamicin. Confocal, scanning electron microscopy, and other biochemical tests deduced that biofilm-forming components exoproteins, eDNA, and exolipids as exopolymeric substances in Pseudomonas aeruginosa biofilms were increased in the presence of gentamicin. An increase in reactive oxygen species generation along with increased cell surface hydrophobicity was also seen for both strains when treated with gentamicin. The observed increase in the adherence of the cells accompanied by the increase in the components of exopolymeric substances may have largely contributed to the increased biofilm production by the Pseudomonas aeruginosa strains under the stress of the antibiotic treatment.
Collapse
Affiliation(s)
- Abhinash Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Saurav K Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Paromita Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
- Kalinga University, Naya Raipur, CG, 492101, India
| | - Kritika Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Tapas K Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India.
| |
Collapse
|
42
|
McDaniel MS, Sumpter NA, Lindgren NR, Billiot CE, Swords WE. Comparative genomics of clinical Stenotrophomonas maltophilia isolates reveals genetic diversity which correlates with colonization and persistence in vivo. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001408. [PMID: 37942787 PMCID: PMC10710838 DOI: 10.1099/mic.0.001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often present in people with respiratory diseases such as cystic fibrosis (CF). People with CF (pwCF) experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that Pseudomonas aeruginosa promotes persistence of S. maltophilia in mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct nearly complete genomes of 10 clinical isolates. The genomes of these isolates were then compared with all publicly available S. maltophilia genome assemblies, and each isolate was then evaluated for colonization/persistence in vivo, both alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent between strains, there was considerable variability in both genome structure and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in experimental mouse respiratory infections in the presence or absence of P. aeruginosa. Ultimately, this study gives us a greater understanding of the genomic diversity of clinical S. maltophilia isolates, and how this genomic diversity relates to both interactions with other pulmonary pathogens and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Melissa S. McDaniel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - Nicholas A. Sumpter
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Birmingham, AL, US
| | - Natalie R. Lindgren
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - Caitlin E. Billiot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - W. Edward Swords
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| |
Collapse
|
43
|
Wang Y, Li R, Wang D, Qian B, Bian Z, Wei J, Wei X, Xu JR. Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii. Nat Commun 2023; 14:6972. [PMID: 37914724 PMCID: PMC10620189 DOI: 10.1038/s41467-023-42675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Lichens are of great ecological importance but mechanisms regulating lichen symbiosis are not clear. Umbilicaria muhlenbergii is a lichen-forming fungus amenable to molecular manipulations and dimorphic. Here, we established conditions conducive to symbiotic interactions and lichen differentiation and showed the importance of UMP1 MAP kinase in lichen development. In the initial biofilm-like symbiotic complexes, algal cells were interwoven with pseudohyphae covered with extracellular matrix. After longer incubation, fungal-algal complexes further differentiated into primitive lichen thalli with a melanized cortex-like and pseudoparenchyma-like tissues containing photoactive algal cells. Mutants deleted of UMP1 were blocked in pseudohyphal growth and development of biofilm-like complexes and primitive lichens. Invasion of dividing mother cells that contributes to algal layer organization in lichens was not observed in the ump1 mutant. Overall, these results showed regulatory roles of UMP1 in symbiotic interactions and lichen development and suitability of U. muhlenbergii as a model for studying lichen symbiosis.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Rong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Diwen Wang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ben Qian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuyun Bian
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
44
|
Almeida E, Puri S, Labossiere A, Elangovan S, Kim J, Ramsey M. Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis. mSystems 2023; 8:e0011523. [PMID: 37610230 PMCID: PMC10654079 DOI: 10.1128/msystems.00115-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE As the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observed in vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host.
Collapse
Affiliation(s)
- Eric Almeida
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Surendra Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Subashini Elangovan
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
45
|
West KHJ, Ma SV, Pensinger DA, Tucholski T, Tiambeng TN, Eisenbraun EL, Yehuda A, Hayouka Z, Ge Y, Sauer JD, Blackwell HE. Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in Listeria monocytogenes. Biochemistry 2023; 62:2878-2892. [PMID: 37699554 PMCID: PMC10676741 DOI: 10.1021/acs.biochem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize agr QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. Listeria monocytogenes, an important foodborne pathogen, uses an agr system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of agr in Listeria infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in Listeria. We identified a 6-mer AIP signal in L. monocytogenes supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based agr reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in L. monocytogenes. We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing agr activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type L. monocytogenes. The lead agr agonist and antagonist in L. monocytogenes were also capable of antagonizing agr signaling in the related pathogen Staphylococcus aureus, further extending their utility and suggesting different mechanisms of agr activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in L. monocytogenes.
Collapse
Affiliation(s)
- Korbin H J West
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Stella V Ma
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Daniel A Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Emma L Eisenbraun
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
46
|
Eladawy M, Thomas JC, Hoyles L. Phenotypic and genomic characterization of Pseudomonas aeruginosa isolates recovered from catheter-associated urinary tract infections in an Egyptian hospital. Microb Genom 2023; 9:001125. [PMID: 37902186 PMCID: PMC10634444 DOI: 10.1099/mgen.0.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) represent one of the major healthcare-associated infections, and Pseudomonas aeruginosa is a common Gram-negative bacterium associated with catheter infections in Egyptian clinical settings. The present study describes the phenotypic and genotypic characteristics of 31 P. aeruginosa isolates recovered from CAUTIs in an Egyptian hospital over a 3 month period. Genomes of isolates were of good quality and were confirmed to be P. aeruginosa by comparison to the type strain (average nucleotide identity, phylogenetic analysis). Clonal diversity among the isolates was determined; eight different sequence types were found (STs 244, 357, 381, 621, 773, 1430, 1667 and 3765), of which ST357 and ST773 are considered to be high-risk clones. Antimicrobial resistance (AMR) testing according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines showed that the isolates were highly resistant to quinolones [ciprofloxacin (12/31, 38.7 %) and levofloxacin (9/31, 29 %) followed by tobramycin (10/31, 32.5 %)] and cephalosporins (7/31, 22.5 %). Genotypic analysis of resistance determinants predicted all isolates to encode a range of AMR genes, including those conferring resistance to aminoglycosides, β-lactamases, fluoroquinolones, fosfomycin, sulfonamides, tetracyclines and chloramphenicol. One isolate was found to carry a 422 938 bp pBT2436-like megaplasmid encoding OXA-520, the first report from Egypt of this emerging family of clinically important mobile genetic elements. All isolates were able to form biofilms and were predicted to encode virulence genes associated with adherence, antimicrobial activity, anti-phagocytosis, phospholipase enzymes, iron uptake, proteases, secretion systems and toxins. The present study shows how phenotypic analysis alongside genomic analysis may help us understand the AMR and virulence profiles of P. aeruginosa contributing to CAUTIs in Egypt.
Collapse
Affiliation(s)
- Mohamed Eladawy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Jonathan C. Thomas
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
47
|
Renye JA, Mendez-Encinas MA, White AK, Miller AL, McAnulty MJ, Yadav MP, Hotchkiss AT, Guron GKP, Oest AM, Martinez-Robinson KG, Carvajal-Millan E. Antimicrobial activity of thermophilin 110 against the opportunistic pathogen Cutibacterium acnes. Biotechnol Lett 2023; 45:1365-1379. [PMID: 37606751 DOI: 10.1007/s10529-023-03419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Thermophilin 110, a bacteriocin produced by Streptococcus thermophilus B59671, inhibited planktonic growth and biofilm formation of Cutibacterium acnes, a commensal skin bacterium associated with the inflammatory disease, acne vulgaris, and more invasive deep tissue infections. RESULTS Thermophilin 110 prevented planktonic growth of C. acnes at a concentration ≥ 160 AU mL-1; while concentrations ≥ 640 AU mL-1 resulted in a > 5 log reduction in viable planktonic cell counts and inhibited biofilm formation. Arabinoxylan (AX) and sodium alginate (SA) hydrogels were shown to encapsulate thermophilin 110, but as currently formulated, the encapsulated bacteriocin was unable to diffuse out of the gel and inhibit the growth of C. acnes. Hydrogels were also used to encapsulate S. thermophilus B59671, and inhibition zones were observed against C. acnes around intact SA gels, or S. thermophilus colonies that were released from AX gels. CONCLUSIONS Thermophilin 110 has potential as an antimicrobial for preventing C. acnes infections and further optimization of SA and AX gel formulations could allow them to serve as delivery systems for bacteriocins or bacteriocin-producing probiotics.
Collapse
Affiliation(s)
- John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Mayra A Mendez-Encinas
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, S/N, 83621, Caborca, SON, Mexico
| | - Andre K White
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Amanda L Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Michael J McAnulty
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Madhav P Yadav
- Sustainable Biofuels and Co-Products Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Arland T Hotchkiss
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Giselle K P Guron
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Karla G Martinez-Robinson
- Research Center for Food and Development, A.C. Carretera Gustavo E. Astiazaran Rosas 46, 83304, Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, A.C. Carretera Gustavo E. Astiazaran Rosas 46, 83304, Hermosillo, SON, Mexico
| |
Collapse
|
48
|
Ikome HN, Tamfu AN, Abdou JP, Fouotsa H, Nangmo PK, Lah FCW, Tchinda AT, Ceylan O, Frederich M, Nkengfack AE. Disruption of Biofilm Formation and Quorum Sensing in Pathogenic Bacteria by Compounds from Zanthoxylum Gilletti (De Wild) P.G. Waterman. Appl Biochem Biotechnol 2023; 195:6113-6131. [PMID: 36811771 DOI: 10.1007/s12010-023-04380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Microbial resistance is facilitated by biofilm formation and quorum-sensing mediated processes. In this work, the stem bark (ZM) and fruit extracts (ZMFT) of Zanthoxylum gilletii were subjected to column chromatography and afforded lupeol (1), 2,3-epoxy-6,7-methylenedioxyconiferyl alcohol (3), nitidine chloride (4), nitidine (7), sucrose (6) and sitosterol-β-D-glucopyranoside (2). The compounds were characterized using MS and NMR spectral data. The samples were evaluated for antimicrobial, antibiofilm and anti-quorum sensing activities. Highest antimicrobial activity was exhibited by compounds 3, 4 and 7 against Staphylococcus aureus (MIC 200 µg/mL), compounds 3 and 4 against Escherichia coli (MIC = 100 µg/mL) and compounds 4 and 7 against Candida albicans (MIC = 50 µg/mL). At MIC and sub-MIC concentrations, all samples inhibited biofilm formation by pathogens and violacein production in C. violaceum CV12472 except compound 6. Good disruption of QS-sensing in C. violaceum revealed by inhibition zone diameters were exhibited by compounds 3 (11.5 ± 0.5 mm), 4 (12.5 ± 1.5 mm), 5 (15.0 ± 0.8 mm), 7 (12.0 ± 1.5 mm) as well as the crude extracts from stem barks (16.5 ± 1.2 mm) and seeds (13.0 ± 1.4 mm). The profound inhibition of quorum sensing mediated processes in test pathogens by compounds 3, 4, 5 and 7 suggests the methylenedioxy- group that these compounds possess as the possible pharmacophore.
Collapse
Affiliation(s)
- Hermia Nalova Ikome
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147, Mugla, Turkey.
| | - Jean Pierre Abdou
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaondere, Cameroon
| | - Hugues Fouotsa
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| | - Pamela Kemda Nangmo
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Fidèle Castro Weyepe Lah
- Department of Organic Chemistry, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Center for Studies on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaounde, Cameroon.
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147, Mugla, Turkey
| | - Michel Frederich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicine, CIRM, University of Liege, 4000, Liege, Belgium
| | | |
Collapse
|
49
|
Kuznetsova MV, Pospelova JS, Maslennikova IL, Starčič Erjavec M. Dual-Species Biofilms: Biomass, Viable Cell Ratio/Cross-Species Interactions, Conjugative Transfer. Int J Mol Sci 2023; 24:14497. [PMID: 37833945 PMCID: PMC10572544 DOI: 10.3390/ijms241914497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Biofilms as a form of adaptation are beneficial for bacterial survival and may be hot spots for horizontal gene transfer, including conjugation. The aim of this research was to characterize the biofilm biomass, viable cell ratios and conjugative transfer of the pOX38 plasmid, an F-plasmid derivative, from the Escherichia coli N4i pOX38 strain (donor) into a uropathogenic E. coli DL82 strain (recipient) within dual-species biofilms with one of the following opportunistic pathogenic bacteria: Klebsiella pneumoniae, Enterococcus faecalis or Pseudomonas aeruginosa. Dual-species biofilms of E. coli with K. pneumoniae or P. aeruginosa but not E. faecalis were more massive and possessed more exopolysaccharide matrix compared to single-species biofilms of donor and recipient cells. Correlation between biofilm biomass and exopolysaccharide matrix was rs = 0.888 in dual-species biofilms. In dual-species biofilm with E. faecalis the proportion of E. coli was the highest, while in the biofilm with P. aeruginosa and K. pneumoniae, the E. coli was less abundant. The conjugative frequencies of plasmid transfer in dual-species biofilms of E. coli with E. faecalis and P. aeruginosa were reduced. A decrease in conjugative frequency was also observed when cell-free supernatants (CFSs) of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Further, the activity of the autoinducer AI-2 in the CFSs of the E. coli conjugation mixture was reduced when bacteria or CFSs of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Hence, the intercellular and interspecies interactions in dual-species biofilms depend on the partners involved.
Collapse
Affiliation(s)
- Marina V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, 614081 Perm, Russia
| | | | - Irina L Maslennikova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, 614081 Perm, Russia
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
50
|
Aguilera-Correa JJ, Boudehen YM, Kremer L. Characterization of Mycobacterium abscessus colony-biofilms based on bi-dimensional images. Antimicrob Agents Chemother 2023; 67:e0040223. [PMID: 37565746 PMCID: PMC10508158 DOI: 10.1128/aac.00402-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Mycobacterium abscessus biofilm aggregates have been shown in the lungs of cystic fibrosis patients and are often tolerant to drugs. Herein, we analyzed bi-dimensional images of either fluorescent or Congo red-stained M. abscessus colony-biofilms grown on a membrane to monitor growth and shape of M. abscessus smooth and rough variants. These colony-biofilms responded differently to rifabutin and bedaquiline, thus highlighting the importance of the morphotype to properly address antibiotic treatment in patients with biofilm-related infections.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|