1
|
Finger F, Lemaitre J, Juin S, Jackson B, Funk S, Lessler J, Mintz E, Dely P, Boncy J, Azman AS. Inferring the proportion of undetected cholera infections from serological and clinical surveillance in an immunologically naive population. Epidemiol Infect 2024; 152:e149. [PMID: 39618115 PMCID: PMC11626459 DOI: 10.1017/s0950268824000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 12/11/2024] Open
Abstract
Most infections with pandemic Vibrio cholerae are thought to result in subclinical disease and are not captured by surveillance. Previous estimates of the ratio of infections to clinical cases have varied widely (2 to 100 infections per case). Understanding cholera epidemiology and immunity relies on the ability to translate between numbers of clinical cases and the underlying number of infections in the population. We estimated the infection incidence during the first months of an outbreak in a cholera-naive population using a Bayesian vibriocidal antibody titer decay model combining measurements from a representative serosurvey and clinical surveillance data. 3,880 suspected cases were reported in Grande Saline, Haiti, between 20 October 2010 and 6 April 2011 (clinical attack rate 18.4%). We found that more than 52.6% (95% Credible Interval (CrI) 49.4-55.7) of the population ≥2 years showed serologic evidence of infection, with a lower infection rate among children aged 2-4 years (35.5%; 95%CrI 24.2-51.6) compared with people ≥5 years (53.1%; 95%CrI 49.4-56.4). This estimated infection rate, nearly three times the clinical attack rate, with underdetection mainly seen in those ≥5 years, has likely impacted subsequent outbreak dynamics. Our findings show how seroincidence estimates improve understanding of links between cholera burden, transmission dynamics and immunity.
Collapse
Affiliation(s)
- Flavio Finger
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Epicentre, Paris, France
| | - Joseph Lemaitre
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stanley Juin
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
| | - Brendan Jackson
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Justin Lessler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Mintz
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Patrick Dely
- Ministère de la Santé Publique et de la Population, Port au Prince, Haiti
| | - Jacques Boncy
- Ministère de la Santé Publique et de la Population, Port au Prince, Haiti
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Center for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Talaat KR, Porter CK, Chakraborty S, Feijoo BL, Brubaker J, Adjoodani BM, DeNearing B, Prouty MG, Poole ST, Bourgeois AL, Billingsley M, Sack DA, Eder-Lingelbach S, Taucher C. Validation of a Human Challenge Model Using an LT-Expressing Enterotoxigenic E. coli Strain (LSN03-016011) and Characterization of Potential Amelioration of Disease by an Investigational Oral Vaccine Candidate (VLA1701). Microorganisms 2024; 12:727. [PMID: 38674674 PMCID: PMC11051778 DOI: 10.3390/microorganisms12040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Controlled human infection models are important tools for the evaluation of vaccines against diseases where an appropriate correlate of protection has not been identified. Enterotoxigenic Escherichia coli (ETEC) strain LSN03-016011/A (LSN03) is an LT enterotoxin and CS17-expressing ETEC strain useful for evaluating vaccine candidates targeting LT-expressing strains. We sought to confirm the ability of the LSN03 strain to induce moderate-to-severe diarrhea in a healthy American adult population, as well as the impact of immunization with an investigational cholera/ETEC vaccine (VLA-1701) on disease outcomes. A randomized, double-blinded pilot study was conducted in which participants received two doses of VLA1701 or placebo orally, one week apart; eight days after the second vaccination, 30 participants (15 vaccinees and 15 placebo recipients) were challenged with approximately 5 × 109 colony-forming units of LSN03. The vaccine was well tolerated, with no significant adverse events. The vaccine also induced serum IgA and IgG responses to LT. After challenge, 11 of the placebo recipients (73.3%; 95%CI: 48.0-89.1) and 7 of the VLA1701 recipients (46.7%; 95%CI: 24.8-68.8) had moderate-to-severe diarrhea (p = 0.26), while 14 placebo recipients (93%) and 8 vaccine recipients (53.3%) experienced diarrhea of any severity, resulting in a protective efficacy of 42.9% (p = 0.035). In addition, the vaccine also appeared to provide protection against more severe diarrhea (p = 0.054). Vaccinees also tended to shed lower levels of the LSN03 challenge strain compared to placebo recipients (p = 0.056). In addition, the disease severity score was lower for the vaccinees than for the placebo recipients (p = 0.046). In summary, the LSN03 ETEC challenge strain induced moderate-to-severe diarrhea in 73.3% of placebo recipients. VLA1701 vaccination ameliorated disease severity, as observed by several parameters, including the percentage of participants experiencing diarrhea, as well as stool frequency and ETEC severity scores. These data highlight the potential value of LSN03 as a suitable ETEC challenge strain to evaluate LT-based vaccine targets (NCT03576183).
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (C.K.P.); (M.G.P.); (S.T.P.)
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Brittany L. Feijoo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Brittany M. Adjoodani
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Michael G. Prouty
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (C.K.P.); (M.G.P.); (S.T.P.)
| | - Steven T. Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (C.K.P.); (M.G.P.); (S.T.P.)
| | - A. Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - Madison Billingsley
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.C.); (B.L.F.); (B.M.A.); (B.D.); (A.L.B.); (M.B.); (D.A.S.)
| | | | | |
Collapse
|
3
|
Roy VL, Majumder PP. Genomic associations with antibody response to an oral cholera vaccine. Vaccine 2023; 41:6391-6400. [PMID: 37699782 DOI: 10.1016/j.vaccine.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Oral cholera vaccine is one of the key interventions used in our fight to end the longest pandemic of our time, cholera. The immune response conferred by the currently available cholera vaccines, as measured by serum antibody levels, is variable amongst its recipients. We undertook a genome wide association study (GWAS) on antibody response to the cholera vaccine; globally, the first GWAS on cholera vaccine response. We identified three clusters of bi-allelic SNPs, in high within-cluster linkage disequilibrium that were moderately (p < 5 × 10-6) associated with antibody response to the cholera vaccine and mapped to chromosomal regions 4p14, 4p16.1 and 6q23.3. Intronic SNPs of TBC1D1 comprised the cluster on 4p14, intronic SNPs of TBC1D14 comprised that on 4p16.1 and SNPs upstream of TNFAIP3 formed the cluster on 6q23.3. SNPs within and around these clusters have been implicated in immune cell function and immunological aspects of autoimmune or infectious diseases (e.g., diseases caused by Helicobacter pylori and malarial parasite). 6q23.3 is a prominent region harbouring many loci associated with immune related diseases, including multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, as well as IL2 and INFα response to a smallpox vaccine. The gene clusters identified in this study play roles in vesicle-mediated pathway, autophagy and NF-κB signaling. No significant effect of O blood group on antibody response to the cholera vaccine was observed in this study.
Collapse
Affiliation(s)
- Vijay Laxmi Roy
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
4
|
Barai L, Hasan MR, Haq JA, Ahsan CR. Salmonellacidal antibody response to Salmonella enterica serovar Typhi in enteric fever and after vaccination with Vi capsular polysaccharide. Int J Infect Dis 2022; 121:120-125. [PMID: 35568365 DOI: 10.1016/j.ijid.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/08/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Serum salmonellacidal (bactericidal) antibody could be used to detect functional capacity of antibody in patients with enteric fever and after typhoid vaccination. METHODS Salmonellacidal antibody response was measured by colorimetric serum salmonellacidal assay from 70 acute and 11 convalescence sera of patients infected with Salmonella Typhi and Paratyphi A and also from 15 control and 6 Vi capsular polysaccharide vaccinated volunteer's sera. RESULTS Sera from patients with typhoid and paratyphoid A showed significant (p < 0.05) levels of salmonellacidal antibody titer (549.9 ± 108.5 and 528.7 ± 187.3) compared with control (0.133 ± 0.1). Moreover, this titer increased significantly (p <0.05) in sera collected between 7 and 10 days and between 11 and 25 days of fever (titer 535.7 ± 119.2 and 794.6 ± 235.6) compared with sera collected from patients with fever for less than 7 days (136.4 ± 52.7). The mean titer significantly (p < 0.05) decreased to 5.5 ± 2.1 after 6-8 weeks onset of illness. Although, very low salmonellacidal titers (2.5 ± 1.5 and 2.3 ± 1.5) were detected after Vi CPS vaccine among the human volunteers, but mean titer was raised 15-fold from pre- to postvaccinated sera (0.166-2.5). CONCLUSION The serum salmonellacidal antibody by colorimetric salmonellacidal assay could be used to detect acute typhoidal cases and also to monitor immune response of typhoid vaccine.
Collapse
Affiliation(s)
- Lovely Barai
- Department of Microbiology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh.
| | - Md Rokibul Hasan
- Department of Microbiology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh
| | | | | |
Collapse
|
5
|
Fakoya B, Hullahalli K, Rubin DHF, Leitner DR, Chilengi R, Sack DA, Waldor MK. Nontoxigenic Vibrio cholerae Challenge Strains for Evaluating Vaccine Efficacy and Inferring Mechanisms of Protection. mBio 2022; 13:e0053922. [PMID: 35389261 PMCID: PMC9040834 DOI: 10.1128/mbio.00539-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Human challenge studies are instrumental for testing cholera vaccines, but these studies use outdated strains and require inpatient facilities. Here, we created next-generation isogenic Ogawa and Inaba O1 V. cholerae challenge strains (ZChol strains) derived from a contemporary Zambian clinical isolate representative of current dominant pandemic V. cholerae. Since the primary mechanism of immune protection against cholera is thought to be antibody responses that limit V. cholerae colonization and not the diarrheagenic actions of cholera toxin, these strains were rendered nontoxigenic. In infant mice, the ZChol strains did not cause diarrhea and proved to accurately gauge reduction in intestinal colonization mediated by effective vaccination. ZChol strains were also valuable as targets for measuring vibriocidal antibody responses. Using barcoded ZChol strains, we discovered that vaccination and passive immunity in the infant mouse model tightens the infection bottleneck without restricting pathogen expansion during intestinal infection. Collectively, our findings suggest that ZChol strains have the potential to enhance the safety, relevance, and scope of future cholera vaccine challenge studies and be valuable reagents for studies of immunity to cholera. IMPORTANCE Human challenge studies are a valuable method for testing the efficacy of cholera vaccines. However, challenge studies cannot be performed in countries of cholera endemicity due to safety concerns; also, contemporary pandemic Vibrio cholerae strains are not used in current challenge studies. To facilitate cholera research, we derived nontoxigenic challenge strains of both V. cholerae serotypes from a 2016 clinical isolate from Zambia and demonstrated how they can be used to gauge cholera immunity accurately and safely. These strains were also genetically barcoded, adding the potential for analyses of V. cholerae population dynamics to challenge studies. Preclinical analyses presented here suggest that these strains have the potential to enhance the safety, relevance, and scope of future cholera vaccine challenge studies and be valuable reagents for studies of immunity to cholera.
Collapse
Affiliation(s)
- Bolutife Fakoya
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Daniel H. F. Rubin
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Deborah R. Leitner
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Macbeth JC, Liu R, Alavi S, Hsiao A. A dysbiotic gut microbiome suppresses antibody mediated-protection against Vibrio cholerae. iScience 2021; 24:103443. [PMID: 34877500 PMCID: PMC8633975 DOI: 10.1016/j.isci.2021.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Cholera is a severe diarrheal disease that places a significant burden on global health. Cholera's high morbidity demands effective prophylactic strategies, but oral cholera vaccines exhibit variable efficacy in human populations. One contributor of variance in human populations is the gut microbiome, which in cholera-endemic areas is modulated by malnutrition, cholera, and non-cholera diarrhea. We conducted fecal transplants from healthy human donors and model communities of either human gut microbes that resemble healthy individuals or those of individuals recovering from diarrhea in various mouse models. We show microbiome-specific effects on host antibody responses against Vibrio cholerae, and that dysbiotic human gut microbiomes representative of cholera-endemic areas suppress the immune response against V. cholerae via CD4+ lymphocytes. Our findings suggest that gut microbiome composition at time of infection or vaccination may be pivotal for providing robust mucosal immunity, and suggest a target for improved prophylactic and therapeutic strategies for cholera.
Collapse
Affiliation(s)
- John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Salma Alavi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Increasing the High Throughput of a Luminescence-Based Serum Bactericidal Assay (L-SBA). BIOTECH 2021; 10:biotech10030019. [PMID: 35822773 PMCID: PMC9245470 DOI: 10.3390/biotech10030019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Serum bactericidal assay (SBA) is the method to investigate in vitro complement-mediated bactericidal activity of sera raised upon vaccination. The assay is based on incubating the target bacteria and exogenous complement with sera at different dilutions and the result of the assay is represented by the sera dilution being able to kill 50% of bacteria present in the inoculum. The traditional readout of the assay is based on measurement of colony-forming units (CFU) obtained after plating different reaction mixes on agar. This readout is at low throughput and time consuming, even when automated counting is used. We previously described a novel assay with a luminescence readout (L-SBA) based on measurement of ATP released by live bacteria, which allowed to substantially increase the throughput as well as to reduce the time necessary to perform the assay when compared to traditional methods. Here we present a further improvement of the assay by moving from a 96-well to a 384-well format, which allowed us to further increase the throughput and substantially reduce costs while maintaining the high performance of the previously described L-SBA method. The method has been successfully applied to a variety of different pathogens.
Collapse
|
8
|
Transient Intestinal Colonization by a Live-Attenuated Oral Cholera Vaccine Induces Protective Immune Responses in Streptomycin-Treated Mice. J Bacteriol 2020; 202:JB.00232-20. [PMID: 32540930 DOI: 10.1128/jb.00232-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Current mouse models for evaluating the efficacy of live oral cholera vaccines (OCVs) have important limitations. Conventionally raised adult mice are resistant to intestinal colonization by Vibrio cholerae, but germfree mice can be colonized and have been used to study OCV immunogenicity. However, germfree animals have impaired immune systems and intestinal physiology; also, live OCVs colonize germfree mice for many months, which does not mimic the clearance kinetics of live OCVs in humans. In this study, we leveraged antibiotic-treated, conventionally raised adult mice to study the effects of transient intestinal colonization by a live OCV V. cholerae strain. In a single-dose vaccination regimen, we found that HaitiV, a live-attenuated OCV candidate, was cleared by streptomycin-treated adult mice within 2 weeks after oral inoculation. This transient colonization elicited far stronger adaptive immune correlates of protection against cholera than did inactivated whole-cell HaitiV. Infant mice from HaitiV-vaccinated dams were also significantly more protected from choleric disease than pups from inactivated-HaitiV-vaccinated dams. Our findings establish the benefits of antibiotic-treated mice for live-OCV studies as well as their limitations and underscore the immunogenicity of HaitiV.IMPORTANCE Oral cholera vaccines (OCVs) are being deployed to combat cholera, but current killed OCVs require multiple doses and show little efficacy in young children. Live OCVs have the potential to overcome these limitations, but small-animal models for testing OCVs have shortcomings. We used an antibiotic treatment protocol for conventional adult mice to study the effects of short-term colonization by a single dose of HaitiV, a live-OCV candidate. Vaccinated mice developed vibriocidal antibodies against V. cholerae and delivered pups that were resistant to cholera, whereas mice vaccinated with inactivated HaitiV did not. These findings demonstrate HaitiV's immunogenicity and suggest that this antibiotic treatment protocol will be useful for evaluating the efficacy of live OCVs.
Collapse
|
9
|
Intra-Laboratory Evaluation of Luminescence Based High-Throughput Serum Bactericidal Assay (L-SBA) to Determine Bactericidal Activity of Human Sera against Shigella. High Throughput 2020; 9:ht9020014. [PMID: 32521658 PMCID: PMC7361673 DOI: 10.3390/ht9020014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Despite the huge decrease in deaths caused by Shigella worldwide in recent decades, shigellosis still causes over 200,000 deaths every year. No vaccine is currently available, and the morbidity of the disease coupled with the rise of antimicrobial resistance renders the introduction of an effective vaccine extremely urgent. Although a clear immune correlate of protection against shigellosis has not yet been established, the demonstration of the bactericidal activity of antibodies induced upon vaccination may provide one means of the functionality of antibodies induced in protecting against Shigella. The method of choice to evaluate the complement-mediated functional activity of vaccine-induced antibodies is the Serum Bactericidal Assay (SBA). Here we present the development and intra-laboratory characterization of a high-throughput luminescence-based SBA (L-SBA) method, based on the detection of ATP as a proxy of surviving bacteria, to evaluate the complement-mediated killing of human sera. We demonstrated the high specificity of the assay against a homologous strain without any heterologous aspecificity detected against species-related and non-species-related strains. We assessed the linearity, repeatability and reproducibility of L-SBA on human sera. This work will guide the bactericidal activity assessment of clinical sera raised against S. sonnei. The method has the potential of being applicable with similar performances to determine the bactericidal activity of any non-clinical and clinical sera that rely on complement-mediated killing.
Collapse
|
10
|
Anti-O-specific polysaccharide (OSP) immune responses following vaccination with oral cholera vaccine CVD 103-HgR correlate with protection against cholera after infection with wild-type Vibrio cholerae O1 El Tor Inaba in North American volunteers. PLoS Negl Trop Dis 2018; 12:e0006376. [PMID: 29624592 PMCID: PMC5906022 DOI: 10.1371/journal.pntd.0006376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/18/2018] [Accepted: 03/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background Cholera is an acute voluminous dehydrating diarrheal disease caused by toxigenic strains of Vibrio cholerae O1 and occasionally O139. A growing body of evidence indicates that immune responses targeting the O-specific polysaccharide (OSP) of V. cholerae are involved in mediating protection against cholera. We therefore assessed whether antibody responses against OSP occur after vaccination with live attenuated oral cholera vaccine CVD 103-HgR, and whether such responses correlate with protection against cholera. Methodology We assessed adult North American volunteers (n = 46) who were vaccinated with 5 × 108 colony-forming units (CFU) of oral cholera vaccine CVD 103-HgR and then orally challenged with approximately 1 × 105 CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961, either 10 or 90 days post-vaccination. Principal findings Vaccination was associated with induction of significant serum IgM and IgA anti-OSP and vibriocidal antibody responses within 10 days of vaccination. There was significant correlation between anti-OSP and vibriocidal antibody responses. IgM and IgA anti-OSP responses on day 10 following vaccination were associated with lower post-challenge stool volume (r = −0.44, P = 0.002; r = −0.36, P = 0.01; respectively), and none of 27 vaccinees who developed a ≥1.5 fold increase in any antibody isotype targeting OSP on day 10 following vaccination compared to baseline developed moderate or severe cholera following experimental challenge, while 5 of 19 who did not develop such anti-OSP responses did (P = 0.01). Conclusion Oral vaccination with live attenuated cholera vaccine CVD 103-HgR induces antibodies that target V. cholerae OSP, and these anti-OSP responses correlate with protection against diarrhea following experimental challenge with V. cholerae O1. Trial registration ClinicalTrials.gov NCT01895855 Cholera is a severe watery diarrheal disease, caused by pathogenic strains of V. cholerae. Protective immunity against cholera is serogroup specific, and serogroup specificity is determined by the O-specific polysaccharide (OSP) of V. cholerae lipopolysaccharide (LPS). Despite this, no previous work has directly assessed correlation of OSP-immune responses and protection against cholera. In this study, we assessed adult North American volunteer’s antibody responses targeting OSP after vaccination with live attenuated oral cholera vaccine CVD 103-HgR, and we assessed correlation of protection against cholera with such antibody responses. Oral vaccination was associated with the induction of significant IgM and IgA responses against OSP, and these responses correlated with vibriocidal responses. There was significant negative correlation of OSP responses and post-challenge stool volume, and none of the volunteers who developed an anti-OSP antibody responses of any isotype of ≥1.5 fold developed moderate or severe cholera following experimental challenge. In summary, vaccination with live attenuated oral cholera vaccine CVD 103-HgR induces antibodies that target V. cholerae OSP, and these responses highly correlate with protection against cholera.
Collapse
|
11
|
Iyer AS, Azman AS, Bouhenia M, Deng LO, Anderson CP, Graves M, Kováč P, Xu P, Ryan ET, Harris JB, Sack DA, Luquero FJ, Leung DT. Dried Blood Spots for Measuring Vibrio cholerae-specific Immune Responses. PLoS Negl Trop Dis 2018; 12:e0006196. [PMID: 29377882 PMCID: PMC5805362 DOI: 10.1371/journal.pntd.0006196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/08/2018] [Accepted: 12/28/2017] [Indexed: 02/03/2023] Open
Abstract
Background Vibrio cholerae causes over 2 million cases of cholera and 90,000 deaths each year. Serosurveillance can be a useful tool for estimating the intensity of cholera transmission and prioritizing populations for cholera control interventions. Current methods involving venous blood draws and downstream specimen storage and transport methods pose logistical challenges in most settings where cholera strikes. To overcome these challenges, we developed methods for determining cholera-specific immune responses from dried blood spots (DBS). Methodology/principal findings As conventional vibriocidal assay methods were unsuitable for DBS eluates from filter paper, we adopted a drop-plate culture method. We show that DBS collected from volunteers in South Sudan, and stored for prolonged periods in field conditions, retained functional vibriocidal antibodies, the titers of which correlated with paired serum titers determined by conventional spectrophotometric methods (r = 0.94, p = 0.00012). We also showed that eluates from DBS Serum Separator cards could be used with conventional spectrophotometric vibriocidal methods, and that they correlated with paired serum at a wide range of titers (r = 0.96, p<0.0001). Similarly, we used ELISA methods to show that V. cholerae O-specific polysaccharide antibody responses from DBS eluates correlated with results from paired serum for IgG (r = 0.85, p = 0.00006), IgM (r = 0.79, p = 0.00049) and IgA (r = 0.73, p = 0.0019), highlighting its potential for use in determination of isotype-specific responses. Storage of DBS cards at a range of temperatures did not change antibody responses. Conclusion In conclusion, we have developed and demonstrated a proof-of-concept for assays utilizing DBS for assessing cholera-specific immune responses. Cholera remains a major public health issue among underprivileged populations in the developing world. Current methods of disease surveillance are inadequate for identifying key populations at highest risk of cholera. Serosurveillance can provide accurate measurements of an individual or population’s exposure to cholera infection or oral cholera vaccine (OCV) induced immunity, though they require venous blood draw and stringent processing needs. Dried blood spots (DBS) overcome these challenges, acting as a portable surveillance tool suitable for field use. We developed a drop-plate culture method for evaluating vibriocidal and cholera-specific isotype responses using DBS from OCV-immunized volunteers from South Sudan. Blood equivalent to only two drops were spotted on Whatman Protein Saver (WPS) DBS cards. Vibriocidal titers from WPS eluates determined by drop-plate culture methods correlated well with serum based assays. In addition, by using DBS cards capable of automatic separation of serum from blood, we demonstrate that vibriocidal titers and V. cholerae polysaccharide antibody responses could be measured by conventional spectrophotometric methods and that these responses are stable over a range of storage temperatures. In summary, we show that cholera-specific immune responses can be measured using DBS, providing a potential tool for large-scale serosurveillance field studies for cholera.
Collapse
Affiliation(s)
- Anita S. Iyer
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Andrew S. Azman
- Department of Epidemiology, John Hopkins University, Baltimore, MD, United States of America
- Médecins Sans Frontières, Geneva, Switzerland
| | - Malika Bouhenia
- Department of Pandemic and Epidemic Diseases, World Health Organization, Juba, South Sudan
| | - Lul O. Deng
- National Public Health Laboratory, Republic of South Sudan Ministry of Health, Juba, South Sudan
| | - Cole P. Anderson
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Michael Graves
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Pavol Kováč
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peng Xu
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - David A. Sack
- Department of International Health, John Hopkins University, Baltimore, MD, United States
| | - Francisco J. Luquero
- Department of International Health, John Hopkins University, Baltimore, MD, United States
- Epicentre, Paris, France
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- * E-mail:
| |
Collapse
|
12
|
Necchi F, Saul A, Rondini S. Development of a high-throughput method to evaluate serum bactericidal activity using bacterial ATP measurement as survival readout. PLoS One 2017; 12:e0172163. [PMID: 28192483 PMCID: PMC5305226 DOI: 10.1371/journal.pone.0172163] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Serum Bactericidal Activity (SBA) assay is the method of choice to evaluate the complement-mediated functional activity of both infection- and vaccine-induced antibodies. To perform a typical SBA assay, serial dilutions of sera are incubated with target bacterial strains and complement. The conventional SBA assay is based on plating on agar the SBA reaction mix and counting the surviving bacterial colony forming units (CFU) at each serum dilution. Even with automated colony counting, it is labor-intensive, time-consuming and not amenable for large-scale studies. Here, we have developed a luminescence-based SBA (L-SBA) method able to detect surviving bacteria by measuring their ATP. At the end of the SBA reaction, a single commercially available reagent is added to each well of the SBA plate, and the resulting luminescence signal is measured in a microplate reader. The signal obtained is proportional to the ATP present, which is directly proportional to the number of viable bacteria. Bactericidal activity is subsequently calculated. We demonstrated the applicability of L-SBA with multiple bacterial serovars, from 5 species: Citrobacter freundii, Salmonella enterica serovars Typhimurium and Enteritidis, Shigella flexneri serovars 2a and 3a, Shigella sonnei and Neisseria meningitidis. Serum bactericidal titers obtained by the luminescence readout method strongly correlate with the data obtained by the conventional agar plate-based assay, and the new assay is highly reproducible. L-SBA considerably shortens assay time, facilitates data acquisition and analysis and reduces the operator dependency, avoiding the plating and counting of CFUs. Our results demonstrate that L-SBA is a useful high-throughput bactericidal assay.
Collapse
Affiliation(s)
- Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Allan Saul
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
13
|
Levinson KJ, Giffen SR, Pauly MH, Kim DH, Bohorov O, Bohorova N, Whaley KJ, Zeitlin L, Mantis NJ. Plant-based production of two chimeric monoclonal IgG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide. J Immunol Methods 2015; 422:111-7. [PMID: 25865265 PMCID: PMC4458452 DOI: 10.1016/j.jim.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 01/19/2023]
Abstract
We have produced and characterized two chimeric human IgG1 monoclonal antibodies that bind different immunodominant epitopes on Vibrio cholerae lipopolysaccharide (LPS). MAb 2D6 IgG1 recognizes Ogawa O-polysaccharide antigen, while mAb ZAC-3 IgG1 recognizes core/lipid A moiety of Ogawa and Inaba LPS. Both antibodies were expressed using a Nicotiana benthamiana-based rapid antibody-manufacturing platform (RAMP) and evaluated in vitro for activities associated with immunity to V. cholerae, including vibriocidal activity, bacterial agglutination and motility arrest.
Collapse
Affiliation(s)
- Kara J Levinson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States
| | - Samantha R Giffen
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | - Michael H Pauly
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Do H Kim
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Ognian Bohorov
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Natasha Bohorova
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Kevin J Whaley
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States.
| |
Collapse
|