1
|
Li Q, Chen S, Yan Z, Fang H, Wang Z, He C. A Novel Intranasal Vaccine With PmpGs + MOMP Induces Robust Protections Both in Respiratory Tract and Genital System Post Chlamydia psittaci Infection. Front Vet Sci 2022; 9:855447. [PMID: 35529835 PMCID: PMC9072866 DOI: 10.3389/fvets.2022.855447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a crucial zoonotic pathogen that causes severe respiratory and reproductive system disease in humans and animals. In our pioneer study, polymorphic membrane protein G (PmpG) mediated attachment to host cells as the adhesions and induced immunity against C. psittaci infection. We hypothesize that multiple PmpG antigens adjuvanted with Vibrio cholerae ghost (VCG) and chitosan gel might trigger full protection via the intranasal route (i.n). In the present study, 40 SPF chickens were randomly divided into four groups, including the PmpGs + MOMP group (i.n), major outer membrane protein (MOMP) group (i.n), PmpGs (Pmp17G + Pmp20G + Pmp21G) group (i.n), and control groups (VCG + chitosan gel) (i.n). Post twice immunizations, the PmpGs + MOMP group yielded highly level-specific IgG, IgA antibodies, and lymphocyte proliferation. As for cytokines, IFN-γ expression was upregulated significantly, while IL-10 concentration was downregulated in the PmpGs + MOMP group compared with other groups. Post challenge, exudate inflammations in air sacs, bacterial loads in lungs, and bacterial shedding in throat swabs were reduced significantly in the PmpGs + MOMP group. In the second experiment, 100 breeder ducks were divided into the PmpGs + MOMP group (i.n), the commercial MOMP group (via intramuscular injection, i.m), the inactivated EBs group (i.n), and the control group (i.n), 25 ducks per group. Post challenge, the reduced egg production recovered soon in the inactivated EBs group and the PmpGs + MOMP group. Moreover, the aforementioned two groups induced higher robust IgG antibodies, lymphocyte proliferation, and IFN-γ secretions than the commercial MOMP vaccine did. Postmortem, lower bacterial loads of spleens were determined in the PmpGs + MOMP group and the inactivated EBs group. However, bacterial clearance of follicular membranes and shedding from the vaginal tract were not significant differences among the three tested groups. Furthermore, the PmpGs + MOMP group induced lower inflammations in the follicles and oviducts. Based on the above evidence, the combination of PmpGs and MOMP adjuvanted with chitosan gel and VCG via intranasal route could induce full protection both in the respiratory system and genital tract post C. psittaci infection. More importantly, the combination antigens are superior to the inactivated EBs antigen due to no contamination to the environment and less genital inflammation. The combination of PmpGs + MOMP adjuvanted with VCG and chitosan gel might be a promising novel vaccine by blocking C. psittaci infection from animals to human beings.
Collapse
Affiliation(s)
- Qiang Li
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Huanxin Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
- *Correspondence: Zhanxin Wang
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Cheng He
| |
Collapse
|
2
|
Li Q, Li X, Quan H, Wang Y, Qu G, Shen Z, He C. IL-10 -/- Enhances DCs Immunity Against Chlamydia psittaci Infection via OX40L/NLRP3 and IDO/Treg Pathways. Front Immunol 2021; 12:645653. [PMID: 34093535 PMCID: PMC8176032 DOI: 10.3389/fimmu.2021.645653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a common zoonotic agent that affects both poultry and humans. Interleukin 10 (IL-10) is an anti-inflammatory factor produced during chlamydial infection, while dendritic cells (DCs) are powerful antigen-presenting cells that induce a primary immune response in the host. However, IL-10 and DCs regulatory mechanisms in C. psittaci infection remain elusive. In vivo and in vitro investigations of the regulatory mechanisms were performed. IL-10−/− mice, conditional DCs depletion mice (zinc finger dendritic cell-diphtheria toxin receptor [zDC-DTR]), and double-deficient mice (DD, IL-10−/−/zDCDTR/DTR) were intranasally infected with C. psittaci. The results showed that more than 90% of IL-10−/− mice, 70% of wild-type mice, and 60% of double-deficient mice survived, whereas all zDC-DTR mice died. A higher lymphocyte proliferation index was found in the IL-10 inhibitor mice and IL-10−/− mice. Moreover, severe lesions and high bacterial loads were detected in the zDC-DTR mice compared with double-deficient mice. In vitro studies revealed increased OX40-OX40 ligand (OX40-OX40L) activation and CD4+T cell proliferation. Besides, the expression of indoleamine 2, 3-dioxygenase (IDO), and regulatory T cells were significantly reduced in the co-culture system of CD4+ T cells and IL-10−/− DCs in C. psittaci infection. Additionally, the activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome increased to facilitate the apoptosis of DCs, leading to rapid clearance of C. psittaci. Our study showed that IL-10−/− upregulated the function of deficient DCs by activating OX40-OX40L, T cells, and the NLPR3 inflammasome, and inhibiting IDO, and regulatory T cells. These effects enhanced the survival rate of mice and C. psittaci clearance. Our research highlights the mechanism of IL-10 interaction with DCs, OX40-OX40L, and the NLPR3 inflammasome, as potential targets against C. psittaci infection.
Collapse
Affiliation(s)
- Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guanggang Qu
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Zhiqiang Shen
- Preventive Veterinary Research Group, Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, China
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Cui L, Qu G, Chen Y, Wu Y, Wang C, Cheng H, Chen J. Polymorphic membrane protein 20G: A promising diagnostic biomarker for specific detection of Chlamydia psittaci infection. Microb Pathog 2021; 155:104882. [PMID: 33848596 DOI: 10.1016/j.micpath.2021.104882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Psittacosis is a zoonotic disease caused by Chlamydia psittaci (C. psittaci), leading to high risk for animal industry and human health. Lack of reliable commercial kits and effective vaccines is hampering control of C. psittaci infection. Polymorphic outer membrane protein Gs (PmpGs) are enriched in diverse C. psittaci, and its role are unclear during C. psittaci infection. In the present study, pmp20G gene was cloned into pET-28a vector and then the constructed plasmid was transferred into Escherichia coli Rossetta (DE3). After denaturation and renaturation, the recombinant Pmp20G-N was identified by SDS-PAGE and Western blot. Afterwards Pmp20G-N was used as the coating antigen to develop an indirect ELISA (I-ELISA) assay. Both the specificity and sensitivity of Pmp20G-N ELISA were 100%, while the MOMP-ELISA had 93.65% sensitivity and 98.94% specificity, respectively. The concordance between MOMP-ELISA and Pmp20G-N ELISA assay was 98.1%. Hence, Pmp20G-N ELISA has the potential to be a diagnostic antigen for detection C. psittaci antibody. However, further studies are needed to be done for differentiating C. psittaci from Chlamydia spp. and other C.psittaci-specific serovars using Pmp20G-N ELISA.
Collapse
Affiliation(s)
- Lei Cui
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Yi Chen
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexing Wu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong, China
| | - He Cheng
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Keb G, Ferrell J, Scanlon KR, Jewett TJ, Fields KA. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. mBio 2021; 12:e02861-20. [PMID: 33468693 PMCID: PMC7845632 DOI: 10.1128/mbio.02861-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Chlamydia trachomatis is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in Chlamydia entry. The advent of genetic techniques in C. trachomatis, such as creation of complete gene deletions via fluorescence-reported allelic exchange mutagenesis (FRAEM), is providing important tools to unravel the contributions of bacterial factors in these complex pathways. The type III secretion chaperone Slc1 directs delivery of at least four effectors during the invasion process. Two of these, TarP and TmeA, have been associated with manipulation of actin networks and are essential for normal levels of invasion. The functions of TarP are well established, whereas TmeA is less well characterized. We leverage chlamydial genetics and proximity labeling here to provide evidence that TmeA directly targets host N-WASP to promote Arp2/3-dependent actin polymerization. Our work also shows that TmeA and TarP influence separate, yet synergistic pathways to accomplish chlamydial entry. These data further support an appreciation that a pathogen, confined by a reductionist genome, retains the ability to commit considerable resources to accomplish bottle-neck steps during the infection process.IMPORTANCE The increasing genetic tractability of Chlamydia trachomatis is accelerating the ability to characterize the unique infection biology of this obligate intracellular parasite. These efforts are leading to a greater understanding of the molecular events associated with key virulence requirements. Manipulation of the host actin cytoskeleton plays a pivotal role throughout Chlamydia infection, yet a thorough understanding of the molecular mechanisms initiating and orchestrating actin rearrangements has lagged. Our work highlights the application of genetic manipulation to address open questions regarding chlamydial invasion, a process essential to survival. We provide definitive insight regarding the role of the type III secreted effector TmeA and how that activity relates to another prominent effector, TarP. In addition, our data implicate at least one source that contributes to the functional divergence of entry mechanisms among chlamydial species.
Collapse
Affiliation(s)
- Gabrielle Keb
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Joshua Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaylyn R Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Kenneth A Fields
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens. mSphere 2017; 2:mSphere00004-17. [PMID: 28251179 PMCID: PMC5322343 DOI: 10.1128/msphere.00004-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/03/2017] [Indexed: 11/24/2022] Open
Abstract
Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising new fluorocycline antibiotic demonstrating in vitro potency and nonclinical efficacy by intravenous and oral administration against the major pathogens associated with moderate to severe CABP. TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising new fluorocycline antibiotic demonstrating in vitro potency and nonclinical efficacy by intravenous and oral administration against the major pathogens associated with moderate to severe CABP.
Collapse
|
6
|
Evani SJ, Dallo SF, Ramasubramanian AK. Biophysical and Biochemical Outcomes of Chlamydia pneumoniae Infection Promotes Pro-atherogenic Matrix Microenvironment. Front Microbiol 2016; 7:1287. [PMID: 27582738 PMCID: PMC4987350 DOI: 10.3389/fmicb.2016.01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/04/2016] [Indexed: 01/12/2023] Open
Abstract
Multiple studies support the hypothesis that infectious agents may be involved in the pathogenesis of atherosclerosis. Chlamydia pneumoniae is strongly implicated in atherosclerosis, but the precise role has been underestimated and poorly understood due to the complexity of the disease process. In this work, we test the hypothesis that C. pneumoniae-infected macrophages lodged in the subendothelial matrix contribute to atherogenesis through pro-inflammatory factors and by cell-matrix interactions. To test this hypothesis, we used a 3D infection model with freshly isolated PBMC infected with live C. pneumoniae and chlamydial antigens encapsulated in a collagen matrix, and analyzed the inflammatory responses over 7 days. We observed that infection significantly upregulates the secretion of cytokines TNF-α, IL-1β, IL-8, MCP-1, MMP, oxidative stress, transendothelial permeability, and LDL uptake. We also observed that infected macrophages form clusters, and substantially modify the microstructure and mechanical properties of the extracellular matrix to an atherogenic phenotype. Together, our data demonstrates that C. pneumoniae-infection drives a low-grade, sustained inflammation that may predispose in the transformation to atherosclerotic foci.
Collapse
Affiliation(s)
- Shankar J Evani
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio TX, USA
| | - Shatha F Dallo
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio TX, USA
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, University of Texas at San Antonio, San AntonioTX, USA; South Texas Center for Emerging Infectious Diseases, San AntonioTX, USA
| |
Collapse
|
7
|
Biophysical regulation of Chlamydia pneumoniae-infected monocyte recruitment to atherosclerotic foci. Sci Rep 2016; 6:19058. [PMID: 26785849 PMCID: PMC4726309 DOI: 10.1038/srep19058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023] Open
Abstract
Chlamydia pneumoniae infection is implicated in atherosclerosis although the contributory mechanisms are poorly understood. We hypothesize that C. pneumoniae infection favors the recruitment of monocytes to atherosclerotic foci by altering monocyte biophysics. Primary, fresh human monocytes were infected with C. pneumoniae for 8 h, and the interactions between monocytes and E-selectin or aortic endothelium under flow were characterized by video microscopy and image analysis. The distribution of membrane lipid rafts and adhesion receptors were analyzed by imaging flow cytometry. Infected cells rolled on E-selectin and endothelial surfaces, and this rolling was slower, steady and uniform compared to uninfected cells. Infection decreases cholesterol levels, increases membrane fluidity, disrupts lipid rafts, and redistributes CD44, which is the primary mediator of rolling interactions. Together, these changes translate to higher firm adhesion of infected monocytes on endothelium, which is enhanced in the presence of LDL. Uninfected monocytes treated with LDL or left untreated were used as baseline control. Our results demonstrate that the membrane biophysical changes due to infection and hyperlipidemia are one of the key mechanisms by which C. pneumoniae can exacerbate atherosclerotic pathology. These findings provide a framework to characterize the role of ‘infectious burden’ in the development and progression of atherosclerosis.
Collapse
|
8
|
Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015; 28:208-36. [PMID: 25567228 DOI: 10.1128/cmr.00110-14] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A pure bacterial culture remains essential for the study of its virulence, its antibiotic susceptibility, and its genome sequence in order to facilitate the understanding and treatment of caused diseases. The first culture conditions empirically varied incubation time, nutrients, atmosphere, and temperature; culture was then gradually abandoned in favor of molecular methods. The rebirth of culture in clinical microbiology was prompted by microbiologists specializing in intracellular bacteria. The shell vial procedure allowed the culture of new species of Rickettsia. The design of axenic media for growing fastidious bacteria such as Tropheryma whipplei and Coxiella burnetii and the ability of amoebal coculture to discover new bacteria constituted major advances. Strong efforts associating optimized culture media, detection methods, and a microaerophilic atmosphere allowed a dramatic decrease of the time of Mycobacterium tuberculosis culture. The use of a new versatile medium allowed an extension of the repertoire of archaea. Finally, to optimize the culture of anaerobes in routine bacteriology laboratories, the addition of antioxidants in culture media under an aerobic atmosphere allowed the growth of strictly anaerobic species. Nevertheless, among usual bacterial pathogens, the development of axenic media for the culture of Treponema pallidum or Mycobacterium leprae remains an important challenge that the patience and innovations of cultivators will enable them to overcome.
Collapse
|
9
|
Cheeniyil A, Evani SJ, Dallo SF, Ramasubramanian AK. Shear stress upregulates IL-1β secretion by Chlamydia pneumoniae- infected monocytes. Biotechnol Bioeng 2015; 112:838-42. [PMID: 25336058 DOI: 10.1002/bit.25486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/19/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
Infectious agents are increasingly implicated in the development and progression of chronic inflammatory diseases. Several lines of evidence suggest that the common intracellular respiratory pathogen, Chlamydia pneumoniae contributes to the well-established risk factors of atherosclerosis but the exact mechanism is not well understood. It is believed that C. pneumoniae-infected monocytes travel from the lung to the atherosclerotic foci, during which the cells experience mechanical stimuli due to blood flow. In this work, we characterized the effect of physiological levels of shear stress on C. pneumoniae-infected human monocytes in an in vitro flow model. We found that a shear stress of 5 dyn/cm(2) enhanced the expression of pro-inflammatory cytokine IL-1β only in infected, but not in uninfected, monocytes. We also found that this enhancement is due to the upregulation of IL-1β gene expression due to shear stress. Our results demonstrate that mechanotransduction is an important, heretofore unaddressed, determinant of inflammatory response to an infection.
Collapse
Affiliation(s)
- Aswathi Cheeniyil
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249.
| | | | | | | |
Collapse
|
10
|
Buchacher T, Wiesinger-Mayr H, Vierlinger K, Rüger BM, Stanek G, Fischer MB, Weber V. Human blood monocytes support persistence, but not replication of the intracellular pathogen C. pneumoniae. BMC Immunol 2014; 15:60. [PMID: 25488836 PMCID: PMC4268907 DOI: 10.1186/s12865-014-0060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Background Intracellular pathogens have devised various mechanisms to subvert the host immune response in order to survive and replicate in host cells. Here, we studied the infection of human blood monocytes with the intracellular pathogen C. pneumoniae and the effect on cytokine and chemokine profiles in comparison to stimulation with LPS. Results Monocytes purified from peripheral blood mononuclear cells by negative depletion were infected with C. pneumoniae. While immunofluorescence confirmed the presence of chlamydial lipopolysaccharide (LPS) in the cytoplasm of infected monocytes, real-time PCR did not provide evidence for replication of the intracellular pathogen. Complementary to PCR, C. pneumoniae infection was confirmed by an oligonucleotide DNA microarray for the detection of intracellular pathogens. Raman microspectroscopy revealed different molecular fingerprints for infected and non-infected monocytes, which were mainly due to changes in lipid and fatty acid content. Stimulation of monocytes with C. pneumoniae or with LPS induced similar profiles of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6, but higher levels of IL-1β, IL-12p40 and IL-12p70 for C. pneumoniae which were statistically significant. C. pneumoniae also induced release of the chemokines MCP-1, MIP-1α and MIP-1β, and CXCL-8, which correlated with TNF-α secretion. Conclusion Infection of human blood monocytes with intracellular pathogens triggers altered cytokine and chemokine pattern as compared to stimulation with extracellular ligands such as LPS. Complementing conventional methods, an oligonucleotide DNA microarray for the detection of intracellular pathogens as well as Raman microspectroscopy provide useful tools to trace monocyte infection. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0060-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanja Buchacher
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria.
| | | | | | - Beate M Rüger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria.
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria.
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria. .,Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria.
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria. .,Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria.
| |
Collapse
|
11
|
Evani SJ, Dallo SF, Murthy AK, Ramasubramanian AK. Shear Stress Enhances Chemokine Secretion from Chlamydia pneumoniae-infected Monocytes. Cell Mol Bioeng 2013; 6:326-334. [PMID: 24505240 DOI: 10.1007/s12195-013-0291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chlamydia pneumoniae is a common respiratory pathogen that is considered a highly likely risk factor for atherosclerosis. C. pneumoniae is disseminated from the lung into systemic circulation via infected monocytes and lodges at the atherosclerotic sites. During transit, C. pneumoniae-infected monocytes in circulation are subjected to shear stress due to blood flow. The effect of mechanical stimuli on infected monocytes is largely understudied in the context of C. pneumoniae infection and inflammation. We hypothesized that fluid shear stress alters the inflammatory response of C. pneumoniae-infected monocytes and contributes to immune cell recruitment to the site of tissue damage. Using an in vitro model of blood flow, we determined that a physiological shear stress of 7.5 dyn/cm2 for 1 h on C. pneumoniae-infected monocytes enhances the production of several chemokines, which in turn is correlated with the recruitment of significantly large number of monocytes. Taken together, these results suggest synergistic interaction between mechanical and chemical factors in C. pneumoniae infection and associated inflammation.
Collapse
Affiliation(s)
- Shankar J Evani
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Shatha F Dallo
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ashlesh K Murthy
- Departments of Pathology and Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
12
|
Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, Ohi R, Spiller BW. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J Biol Chem 2011; 286:33992-8. [PMID: 21841198 DOI: 10.1074/jbc.m111.258426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system "plug" proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.
Collapse
Affiliation(s)
- Tara L Archuleta
- Division of Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bellmann-Weiler R, Martinz V, Kurz K, Engl S, Feistritzer C, Fuchs D, Rupp J, Paldanius M, Weiss G. Divergent modulation of Chlamydia pneumoniae infection cycle in human monocytic and endothelial cells by iron, tryptophan availability and interferon gamma. Immunobiology 2010; 215:842-8. [PMID: 20646782 DOI: 10.1016/j.imbio.2010.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/20/2010] [Indexed: 11/18/2022]
Abstract
Chlamydia pneumoniae is an obligatory intracellular bacterium causing chronic inflammatory diseases in humans. We studied the role of the nutritive factors, iron and tryptophan, towards the course of infection and immune response pathways in C. pneumoniae infected endothelial cells and monocytes. Human endothelial (EA.hy923) and monocytic cells (THP-1) were infected with C. pneumoniae, supplemented with iron or 1-methyltryptophan (1-MT), an inhibitor of the tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO), and subsequently stimulated with IFN-gamma or left untreated. The number of infected cells, the morphology and quantity of C. pneumoniae inclusion bodies, IDO activity and innate immune effector pathways were analysed. While neither iron challenge, IDO inhibition or IFN-gamma treatment had a significant effect on C. pneumoniae morphology or numbers within THP-1 monocytic cells, iron supplementation to EA.hy926 cells resulted in promotion of C. pneumoniae proliferation and differentiation while IFN-gamma had an inhibitory effect. Furthermore, the number of infected endothelial cells was significantly decreased upon 1-MT treatment. C. pneumoniae infection induced a pro-inflammatory immune response as evidenced by increased IDO activity, neopterin formation or TNF-alpha production in THP-1 but not in endothelial cells. These pathways were superinduced upon IFN-gamma treatment and partly modulated by iron supplementation. Our results demonstrate that the infectious cycle of C. pneumoniae behaves differently between monocytic and endothelial cells. While the intracellular pathogen remains in a persistent form within monocytes, it can differentiate and proliferate within endothelial cells indicating that endothelial cells are a preferred environment for Chlamydia. Nutritive factors such as iron have subtle effects on C. pneumoniae biology in endothelial, but not monocytic cells. Our results contribute to a better understanding of C. pneumoniae infection and its role in chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Rosa Bellmann-Weiler
- Department of Internal Medicine I, Clinical Immunology and Infectious Diseases, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|