1
|
Aguiari G, Crudele F, Taccioli C, Minotti L, Corrà F, Keillor JW, Grassilli S, Cervellati C, Volinia S, Bergamini CM, Bianchi N. Dysregulation of Transglutaminase type 2 through GATA3 defines aggressiveness and Doxorubicin sensitivity in breast cancer. Int J Biol Sci 2022; 18:1-14. [PMID: 34975314 PMCID: PMC8692156 DOI: 10.7150/ijbs.64167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
The role of transglutaminase type 2 in cell physiology is related to protein transamidation and signal transduction (affecting extracellular, intracellular and nuclear processes) aided by the expression of truncated isoforms and of two lncRNAs with regulatory functions. In breast cancer TG2 is associated with disease progression supporting motility, epithelial-mesenchymal transition, invasion and drug resistance. The aim of his work is to clarify these issues by emphasizing the interconnections among TGM2 variants and transcription factors associated with an aggressive phenotype, in which the truncated TGH isoform correlates with malignancy. TGM2 transcripts are upregulated by several drugs in MCF-7, but only Doxorubicin is effective in MDA-MB-231 cells. These differences reflect the expression of GATA3, as demonstrated by silencing, suggesting a link between this transcription factor and gene dysregulation. Of note, NC9, an irreversible inhibitor of enzymatic TG2 activities, emerges to control NF-ĸB and apoptosis in breast cancer cell lines, showing potential for combination therapies with Doxorubicin.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Crudele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Linda Minotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids 2021; 53:205-217. [PMID: 33474654 PMCID: PMC7910249 DOI: 10.1007/s00726-020-02938-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023]
Abstract
This study investigates the effects of a site-directed TG2-selective inhibitor on the lung myofibroblast phenotype and ECM deposition to elucidate TG2 as a novel therapeutic target in idiopathic pulmonary fibrosis (IPF)-an incurable progressive fibrotic disease. IPF fibroblasts showed increased expression of TG2, α smooth muscle actin (αSMA) and fibronectin (FN) with increased extracellular TG2 and transforming growth factor β1 (TGFβ1) compared to normal human lung fibroblasts (NHLFs) which do not express αSMA and express lower levels of FN. The myofibroblast phenotype shown by IPF fibroblasts could be reversed by selective TG2 inhibition with a reduction in matrix FN and TGFβ1 deposition. TG2 transduction or TGFβ1 treatment of NHLFs led to a comparable phenotype to that of IPF fibroblasts which was reversible following selective TG2 inhibition. Addition of exogenous TG2 to NHLFs also induced the myofibroblast phenotype by a mechanism involving TGFβ1 activation which could be ameliorated by selective TG2 inhibition. SMAD3-deleted IPF fibroblasts via CRISPR-cas9 genome editing, showed reduced TG2 protein levels following TGFβ1 stimulation. This study demonstrates a key role for TG2 in the induction of the myofibroblast phenotype and shows the potential for TG2-selective inhibitors as therapeutic agents for the treatment of fibrotic lung diseases like IPF.
Collapse
Affiliation(s)
- Shaun Fell
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | - Andy Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R and D, Stevenage, UK
| | - Carmel Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R and D, Stevenage, UK
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
3
|
Almami IS, Aldubayan MA, Felemban SG, Alyamani N, Howden R, Robinson AJ, Pearson TDZ, Boocock D, Algarni AS, Garner AC, Griffin M, Bonner PLR, Hargreaves AJ. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol 2020; 94:3861-3875. [PMID: 32749514 PMCID: PMC7603472 DOI: 10.1007/s00204-020-02852-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Organophosphate compounds (OPs) induce both acute and delayed neurotoxic effects, the latter of which is believed to involve their interaction with proteins other than acetylcholinesterase. However, few OP-binding proteins have been identified that may have a direct role in OP-induced delayed neurotoxicity. Given their ability to disrupt Ca2+ homeostasis, a key aim of the current work was to investigate the effects of sub-lethal neurite outgrowth inhibitory levels of OPs on the Ca2+-dependent enzyme tissue transglutaminase (TG2). At 1-10 µM, the OPs phenyl saligenin phosphate (PSP) and chlorpyrifos oxon (CPO) had no effect cell viability but induced concentration-dependent decreases in neurite outgrowth in differentiating N2a neuroblastoma cells. The activity of TG2 increased in cell lysates of differentiating cells exposed for 24 h to PSP and chlorpyrifos oxon CPO (10 µM), as determined by biotin-cadaverine incorporation assays. Exposure to both OPs (3 and/or 10 µM) also enhanced in situ incorporation of the membrane permeable substrate biotin-X-cadaverine, as indicated by Western blot analysis of treated cell lysates probed with ExtrAvidin peroxidase and fluorescence microscopy of cell monolayers incubated with FITC-streptavidin. Both OPs (10 µM) stimulated the activity of human and mouse recombinant TG2 and covalent labelling of TG2 with dansylamine-labelled PSP was demonstrated by fluorescence imaging following SDS-PAGE. A number of TG2 substrates were tentatively identified by mass spectrometry, including cytoskeletal proteins, chaperones and proteins involved protein synthesis and gene regulation. We propose that the elevated TG2 activity observed is due to the formation of a novel covalent adduct between TG2 and OPs.
Collapse
Affiliation(s)
- Ibtesam S Almami
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, College of Science, Qassim University, Al-Qassim, Saudi Arabia
| | - Maha A Aldubayan
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Shatha G Felemban
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Medical Laboratory Science, Fakeeh College for Medical Science, Jeddah, Saudi Arabia
| | - Najiah Alyamani
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Richard Howden
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander J Robinson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Edgbaston, B15 3TN, UK
| | - Tom D Z Pearson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Martin Griffin
- Department of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Philip L R Bonner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
4
|
Alvarez RG, Karki P, Langleite IE, Bakksjø RJ, Eichacker LA, Furnes C. Characterisation of a novel cold-adapted calcium-activated transglutaminase: implications for medicine and food processing. FEBS Open Bio 2020; 10:495-506. [PMID: 32115900 PMCID: PMC7137806 DOI: 10.1002/2211-5463.12826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Transglutaminases are a family of enzymes that catalyse the cross‐linking of proteins by forming covalent bonds between lysine and glutamine residues in various polypeptides. Cross‐linking reactions are involved in blood clots, skin formation, embryogenesis and apoptosis. Clinically, these enzymes appear to be implicated in neurodegenerative diseases, tumours and coeliac diseases. Transglutaminases have great potential for use in the food industry because of their ability to cross‐link proteins that are not normally linked. Here, a gene coding for transglutaminase from Atlantic cod was cloned into a bacterial expression vector and used to transform protein expression in a strain of Escherichia coli. The successful expression of recombinant transglutaminase protein from Atlantic cod (AcTG‐1) as a soluble protein upon induction at low temperature was confirmed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, immunoblotting and mass spectrometry analysis. Biochemical characterisation demonstrated that the transglutaminase was active between 0 and 65 °C, but was completely inactivated after 20‐min incubation at 70 °C. Interestingly, the enzyme displayed cold‐adapted features, such as temperature instability combined with high catalytic efficiency at low temperatures (8–16 °C). In addition, the enzyme had optimal activity at 50 °C, a new feature for a cold‐adapted enzyme. AcTG‐1 was active in the pH range from 6 to 9, with an optimum at pH 8, and required 5 mm calcium for maximum activity. Potential calcium‐binding sites in the enzyme were predictable, making the enzyme an appropriate model for studying structure–function relationships in the calcium‐dependent transglutaminase family. In vitro gel analysis revealed that transglutaminase cross‐linked casein, collagen and gelatin. The binding of fish fillets in the presence of recombinant AcTG‐1 provided further macroscopic proof for the potential application of AcTG‐1 as a biological cross‐linker in the food industry. Once binding occurred, fish fillets withstood further processing such as frying, boiling, freeze‐thawing and chilling. The low‐temperature activity and new enzymatic properties of AcTG‐1 appear to offer advantages over commercially available enzymatic glues in the food industry.
Collapse
Affiliation(s)
- Rebeca Garcia Alvarez
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Pralav Karki
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ida Elise Langleite
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ragna-Johanne Bakksjø
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Lutz Andreas Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Clemens Furnes
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Wodtke R, Hauser C, Ruiz-Gómez G, Jäckel E, Bauer D, Lohse M, Wong A, Pufe J, Ludwig FA, Fischer S, Hauser S, Greif D, Pisabarro MT, Pietzsch J, Pietsch M, Löser R. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure–Activity Relationships, and Pharmacokinetic Profiling. J Med Chem 2018; 61:4528-4560. [DOI: 10.1021/acs.jmedchem.8b00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Christoph Hauser
- Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Elisabeth Jäckel
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - David Bauer
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Martin Lohse
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - Alan Wong
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johanna Pufe
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Fischer
- Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sandra Hauser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Dieter Greif
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jens Pietzsch
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Markus Pietsch
- Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
6
|
Tissue transglutaminase (TG2) enables survival of human malignant pleural mesothelioma cells in hypoxia. Cell Death Dis 2017; 8:e2592. [PMID: 28151477 PMCID: PMC5386478 DOI: 10.1038/cddis.2017.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor linked to environmental/occupational exposure to asbestos, characterized by the presence of significant areas of hypoxia. In this study, we firstly explored the expression and the role of transglutaminase 2 (TG2) in MPM cell adaptation to hypoxia. We demonstrated that cells derived from biphasic MPM express the full-length TG2 variant at higher levels than cells derived from epithelioid MPM and normal mesothelium. We observed a significant induction of TG2 expression and activity when cells from biphasic MPM were grown as a monolayer in chronic hypoxia or packed in spheroids, where the presence of a hypoxic core was demonstrated. We described that the hypoxic induction of TG2 was HIF-2 dependent. Importantly, TGM2-v1 silencing caused a marked and significant reduction of MPM cell viability in hypoxic conditions when compared with normoxia. Notably, a TG2-selective irreversible inhibitor that reacts with the intracellular active form of TG2, but not a non-cell-permeable inhibitor, significantly compromised cell viability in MPM spheroids. Understanding the expression and function of TG2 in the adaptation to the hypoxic environment may provide useful information for novel promising therapeutic options for MPM treatment.
Collapse
|
7
|
Currò M, Gangemi C, Giunta ML, Ferlazzo N, Navarra M, Ientile R, Caccamo D. Transglutaminase 2 is involved in amyloid-beta1–42-induced pro-inflammatory activation via AP1/JNK signalling pathways in THP-1 monocytes. Amino Acids 2016; 49:659-669. [DOI: 10.1007/s00726-016-2366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022]
|
8
|
Feriotto G, Calza R, Bergamini CM, Griffin M, Wang Z, Beninati S, Ferretti V, Marzola E, Guerrini R, Pagnoni A, Cavazzini A, Casciano F, Mischiati C. Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten. Amino Acids 2016; 49:551-565. [PMID: 27699491 DOI: 10.1007/s00726-016-2339-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.
Collapse
Affiliation(s)
- G Feriotto
- Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - R Calza
- Department of Biomedical Sciences and Surgical Specialties, School of Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - C M Bergamini
- Department of Biomedical Sciences and Surgical Specialties, School of Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - M Griffin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Z Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - S Beninati
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - V Ferretti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - E Marzola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - R Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - A Pagnoni
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - A Cavazzini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - F Casciano
- Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - C Mischiati
- Department of Biomedical Sciences and Surgical Specialties, School of Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
9
|
Yazdani Y, Azari S, Kalhor HR. Expression of Functional Recombinant Human Tissue Transglutaminase (TG2) Using the Bac-to-Bac Baculovirus Expression System. Adv Pharm Bull 2016; 6:49-56. [PMID: 27123417 PMCID: PMC4845553 DOI: 10.15171/apb.2016.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/05/2015] [Accepted: 01/10/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer's disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. METHODS pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. RESULTS Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. CONCLUSION Human TG2 was expressed efficiently in the active biological form in the Bac-to-Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system.
Collapse
Affiliation(s)
- Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahram Azari
- Department of Molecular Medicine, Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Yazdani Y, Azari S, Kalhor HR. Expression of Functional Recombinant Human Tissue Transglutaminase (TG2) Using the Bac-to-Bac Baculovirus Expression System. Adv Pharm Bull 2016; 6:49-56. [PMID: 27123417 PMCID: PMC4845553 DOI: 10.15171/apb.2016.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/05/2015] [Accepted: 01/10/2016] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer's disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. METHODS pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. RESULTS Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. CONCLUSION Human TG2 was expressed efficiently in the active biological form in the Bac-to-Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system.
Collapse
Affiliation(s)
- Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahram Azari
- Department of Molecular Medicine, Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Development of Potent and Selective Tissue Transglutaminase Inhibitors: Their Effect on TG2 Function and Application in Pathological Conditions. ACTA ACUST UNITED AC 2015; 22:1347-61. [DOI: 10.1016/j.chembiol.2015.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/04/2015] [Accepted: 08/18/2015] [Indexed: 01/03/2023]
|
12
|
Mischiati C, Ura B, Roncoroni L, Elli L, Cervellati C, Squerzanti M, Conte D, Doneda L, Polverino de Laureto P, de Franceschi G, Calza R, Barrero CA, Merali S, Ferrari C, Bergamini CM, Agostinelli E. Changes in protein expression in two cholangiocarcinoma cell lines undergoing formation of multicellular tumor spheroids in vitro. PLoS One 2015; 10:e0118906. [PMID: 25756965 PMCID: PMC4355290 DOI: 10.1371/journal.pone.0118906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is relevant in malignant growth and frequently correlates with worsening disease progression due to its implications in metastases and resistance to therapeutic interventions. Although EMT is known to occur in several types of solid tumors, the information concerning tumors arising from the epithelia of the bile tract is still limited. In order to approach the problem of EMT in cholangiocarcinoma, we decided to investigate the changes in protein expression occurring in two cell lines under conditions leading to growth as adherent monolayers or to formation of multicellular tumor spheroids (MCTS), which are considered culture models that better mimic the growth characteristics of in-vivo solid tumors. In our system, changes in phenotypes occur with only a decrease in transmembrane E-cadherin and vimentin expression, minor changes in the transglutaminase protein/activity but with significant differences in the proteome profiles, with declining and increasing expression in 6 and in 16 proteins identified by mass spectrometry. The arising protein patterns were analyzed based on canonical pathways and network analysis. These results suggest that significant metabolic rearrangements occur during the conversion of cholangiocarcinomas cells to the MCTS phenotype, which most likely affect the carbohydrate metabolism, protein folding, cytoskeletal activity, and tissue sensitivity to oxygen.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, University of Trieste, Trieste, Italy
| | - Leda Roncoroni
- Center for Prevention and Diagnosis of Coeliac Disease/Gastroenterology 2, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milano, Milano, Italy
| | - Luca Elli
- Center for Prevention and Diagnosis of Coeliac Disease/Gastroenterology 2, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Cervellati
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Squerzanti
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Dario Conte
- Center for Prevention and Diagnosis of Coeliac Disease/Gastroenterology 2, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milano, Milano, Italy
| | | | | | - Roberta Calza
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlos A. Barrero
- Moulder Center for Drug Discovery Research, Temple University, School of Pharmacy, Philadelphia, Pennsylvania, United States of America
| | - Salim Merali
- Moulder Center for Drug Discovery Research, Temple University, School of Pharmacy, Philadelphia, Pennsylvania, United States of America
| | - Carlo Ferrari
- Department of Clinical and Molecular Sciences, Faculty of Medicine, Le Marche Polytechnic University, Ancona, Italy
| | - Carlo M. Bergamini
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
- * E-mail:
| | - Enzo Agostinelli
- Istituto Pasteur, Fondazione Cenci Bolognetti and Department of Biochemical Sciences “A. Rossi Fanelli”, La Sapienza University of Rome and CNR, Biology and Molecular Pathology Institutes, Rome, Italy
| |
Collapse
|
13
|
Piacentini M, D'Eletto M, Farrace MG, Rodolfo C, Del Nonno F, Ippolito G, Falasca L. Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states. Cell Tissue Res 2014; 358:793-805. [PMID: 25209703 PMCID: PMC4233112 DOI: 10.1007/s00441-014-1990-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022]
Abstract
Transglutaminase type II (TG2) is a pleiotropic enzyme that exhibits various activities unrelated to its originally identified functions. Apart from post-translational modifications of proteins (peculiar to the transglutaminase family enzymes), TG2 is involved in diverse biological functions, including cell death, signaling, cytoskeleton rearrangements, displaying enzymatic activities, G-protein and non-enzymatic biological functions. It is involved in a variety of human diseases such as celiac disease, diabetes, neurodegenerative diseases, inflammatory disorders and cancer. Regulatory mechanisms might exist through which cells control multifunctional protein expression as a function of their sub-cellular localization. The definition of the tissue and cellular distribution of such proteins is important for the determination of their function(s). We investigate the sub-cellular localization of TG2 by confocal and immunoelectron microscopy techniques in order to gain an understanding of its properties. The culture conditions of human sarcoma cells (2fTGH cells), human embryonic kidney cells (HEK293TG) and human neuroblastoma cells (SK-n-BE(2)) are modulated to induce various stimuli. Human tissue samples of myocardium and gut mucosa (diseased and healthy) are also analyzed. Immuno-gold labeling indicates that TG2 is localized in the nucleus, mitochondria and endoplasmic reticulum under physiological conditions but that this is not a stable association, since different locations or different amounts of TG2 can be observed depending on stress stimuli or the state of activity of the cell. We describe a possible unrecognized location of TG2. Our findings thus provide useful insights regarding the functions and regulation of this pleiotropic enzyme.
Collapse
Affiliation(s)
- Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Cervellati C, Montin K, Squerzanti M, Mischiati C, Ferrari C, Spinozzi F, Mariani P, Amenitsch H, Bergamini CM, Lanzara V. Effects of the regulatory ligands calcium and GTP on the thermal stability of tissue transglutaminase. Amino Acids 2011; 42:2233-42. [PMID: 21706296 DOI: 10.1007/s00726-011-0963-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
Tissue transglutaminase undergoes thermal inactivation with first-order kinetics at moderate temperatures, in a process which is affected in opposite way by the regulatory ligands calcium and GTP, which stabilize different conformations. We have explored the processes of inactivation and of unfolding of transglutaminase and the effects of ligands thereon, combining approaches of differential scanning calorimetry (DSC) and of thermal analysis coupled to fluorescence spectroscopy and small angle scattering. At low temperature (38-45°C), calcium promotes and GTP protects from inactivation, which occurs without detectable disruption of the protein structure but only local perturbations at the active site. Only at higher temperatures (52-56°C), the protein structure undergoes major rearrangements with alterations in the interactions between the N- and C-terminal domain pairs. Experiments by DSC and fluorescence spectroscopy clearly indicate reinforced and weakened interactions of the domains in the presence of GTP and of calcium, and different patterns of unfolding. Small angle scattering experiments confirm different pathways of unfolding, with attainment of limiting values of gyration radius of 52, 60 and 90 Å in the absence of ligands and in the presence of GTP and calcium. Data by X-rays scattering indicate that ligands influence retention of a relatively compact structure in the protein even after denaturation at 70°C. These results suggest that the complex regulation of the enzyme by ligands involves both short- and long-range effects which might be relevant for understanding the turnover of the protein in vivo.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|