1
|
Dhabal D, Sankaranarayanan SKRS, Molinero V. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions. J Phys Chem B 2022; 126:9881-9892. [PMID: 36383428 DOI: 10.1021/acs.jpcb.2c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coarse-grained water models are ∼100 times more efficient than all-atom models, enabling simulations of supercooled water and crystallization. The machine-learned monatomic model ML-BOP reproduces the experimental equation of state (EOS) and ice-liquid thermodynamics at 0.1 MPa on par with the all-atom TIP4P/2005 and TIP4P/Ice models. These all-atom models were parametrized using high-pressure experimental data and are either accurate for water's EOS (TIP4P/2005) or ice-liquid equilibrium (TIP4P/Ice). ML-BOP was parametrized from temperature-dependent ice and liquid experimental densities and melting data at 0.1 MPa; its only pressure training is from compression of TIP4P/2005 ice at 0 K. Here we investigate whether ML-BOP replicates the experimental EOS and ice-water thermodynamics along all pressures of ice I. We find that ML-BOP reproduces the temperature, enthalpy, entropy, and volume of melting of hexagonal ice up to 400 MPa and the EOS of water along the melting line with an accuracy that rivals that of both TIP4P/2005 and TIP4P/Ice. We interpret that the accuracy of ML-BOP originates from its ability to capture the shift between compact and open local structures to changes in pressure and temperature. ML-BOP reproduces the sharpening of the tetrahedral peak of the pair distribution function of water upon supercooling, and its pressure dependence. We characterize the region of metastability of liquid ML-BOP with respect to crystallization and cavitation. The accessibility of ice crystallization to simulations of ML-BOP, together with its accurate representation of the thermodynamics of water, makes it promising for investigating the interplay between anomalies, glass transition, and crystallization under conditions challenging to access through experiments.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, Utah84112-0850, United States
| | - Subramanian K R S Sankaranarayanan
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois60607, United States.,Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah84112-0850, United States
| |
Collapse
|
2
|
Liu Y, Liu X, Duan B, Yu Z, Cheng T, Yu L, Liu L, Liu K. Polymer-Water Interaction Enabled Intelligent Moisture Regulation in Hydrogels. J Phys Chem Lett 2021; 12:2587-2592. [PMID: 33689370 DOI: 10.1021/acs.jpclett.1c00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The water-vapor transition is critical for hydrogels in a collection of applications. However, how the polymer-water interaction along with the nature of the structure affect the macroscopic water-vapor transition remains a challenging question to answer. In this work, we tested the moisture transfer behaviors of a series of hydrogels at different humidities and found some hydrogels capable of lowering their surface vapor pressure to stop dehydration at low humidity and absorbing water from ambient air to recover toward initial states at high humidity. Through molecular dynamic simulations, we demonstrate that water inside these hydrogels undergoes increasing intensive intermolecular bonding during evaporation. The increased intermolecular bonding reduces the vapor pressure of the hydrogels and leads to the self-regulation. More interestingly, we demonstrate the self-regulation is closely related to the Young's modulus of hydrogels. These results provide further insight into the mechanism of the water-vapor transition in hydrogels and show potential in a broad range of future applications.
Collapse
Affiliation(s)
- Yuxi Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiaowei Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zehua Yu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Ting Cheng
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Liangying Yu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Lei Liu
- China Tobacco Hubei Industrial, LLC, Wuhan, Hubei 430040, P. R. China
| | - Kang Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Liu X, Wei W, Wu M, Liu K, Li S. Understanding the structure and dynamical properties of stretched water by molecular dynamics simulation. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1669835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xiaowei Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mingbing Wu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Kang Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, People’s Republic of China
| | - Song Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
de Andrade MO, Haqshenas SR, Pahk KJ, Saffari N. The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation. ULTRASONICS SONOCHEMISTRY 2019; 55:262-272. [PMID: 30952547 DOI: 10.1016/j.ultsonch.2019.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A phenomenological implementation of Classical Nucleation Theory (CNT) is employed to investigate the connection between high intensity focused ultrasound (HIFU) pressure and temperature fields with the energetic requirements of bubble nucleation. As a case study, boiling histotripsy in tissue-mimicking phantoms is modelled. The physics of key components in the implementation of CNT in HIFU conditions such as the derivation of nucleation pressure thresholds and approximations regarding the surface tension of the liquid are reviewed and discussed. Simulations show that the acoustic pressure is the ultimate trigger for millisecond bubble nucleation in boiling histotripsy, however, HIFU heat deposition facilitates nucleation by lowering nucleation pressure thresholds. Nucleation thus occurs preferentially at the regions of highest heat deposition within the HIFU field. This implies that bubble nucleation subsequent to millisecond HIFU heat deposition can take place at temperatures below 100 °C as long as the focal HIFU peak negative pressure exceeds the temperature-dependent nucleation threshold. It is also found that the magnitude of nucleation pressure thresholds decreases with decreasing frequencies. Overall, results indicate that it is not possible to separate thermal and mechanical effects of HIFU in the nucleation of bubbles for timescales of a few milliseconds. This methodology provides a promising framework for studying time and space dependencies of the energetics of bubble nucleation within a HIFU field.
Collapse
Affiliation(s)
| | - Seyyed Reza Haqshenas
- UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nader Saffari
- UCL Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
5
|
Vincent O, Zhang J, Choi E, Zhu S, Stroock AD. How Solutes Modify the Thermodynamics and Dynamics of Filling and Emptying in Extreme Ink-Bottle Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2934-2947. [PMID: 30681860 DOI: 10.1021/acs.langmuir.8b03494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the filling and emptying of extreme ink-bottle porous media-micrometer-scale pores connected by nanometer-scale pores-when changing the pressure of the external vapor, in a case where the pore liquid contains solutes. These phenomena are relevant in diverse contexts, such as the weathering of building materials and artwork, aerosol formation in the atmosphere, and the hydration of soils and plants. Using model systems made of vein-shaped microcavities interconnected by a mesoporous matrix, we show experimentally that the presence of a nonvolatile solute shifts the condensation and evaporation transitions and in a way that is consistent with a modified Kelvin-Laplace equation that takes into account the osmotic pressure of the solution. Emptying occurs far below saturation, when the Kelvin stress, mediated by the large curvature of the liquid-vapor interfaces in the nanopores, is negative enough to induce spontaneous bubble nucleation in the microveins. Filling, on the other hand, occurs close to equilibrium (i.e., at saturation, psat for pure water and ps < psat for a solution), driven by the weak capillary pressure of the liquid-vapor interface in the microveins. Interestingly, solutes allow the system to reach situations where the vapor is supersaturated with respect to the solution ( ps < p < psat). We show that in that latter situation, a condensation layer covers the outer surface of the porous system, preventing the generation of Kelvin stresses but inducing osmotic stresses and flows that are vapor pressure-dependent. The timescales and dynamics reflect these different driving forces: emptying proceeds through discrete, stochastic nucleation events with very fast, unsteady bubble growth associated with a poroelastic relaxation process, while filling occurs collectively in all veins of the sample through a slower steady-state process driven by a combination of osmosis and capillarity. The dynamics can however be rendered symmetrical between filling and emptying if bubbles pre-exist during emptying, a case that we explore using cycling of the vapor pressure around equilibrium.
Collapse
Affiliation(s)
- Olivier Vincent
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| | - Jiamin Zhang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| | - Eugene Choi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| | - Siyu Zhu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| | - Abraham D Stroock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
| |
Collapse
|
6
|
Abstract
Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.
Collapse
Affiliation(s)
- Claudia Marcolli
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
González MA, Valeriani C, Caupin F, Abascal JLF. A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model. J Chem Phys 2017; 145:054505. [PMID: 27497563 DOI: 10.1063/1.4960185] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The striking behavior of water has deserved it to be referred to as an "anomalous" liquid. The water anomalies are greatly amplified in metastable (supercooled and/or stretched) regions. This makes difficult a complete experimental description since, beyond certain limits, the metastable phase necessarily transforms into the stable one. Theoretical interpretation of the water anomalies could then be based on simulation results of well validated water models. But the analysis of the simulations has not yet reached a consensus. In particular, one of the most popular theoretical scenarios-involving the existence of a liquid-liquid critical point (LLCP)-is disputed by several authors. In this work, we propose to use a number of exact thermodynamic relations which may shed light on this issue. Interestingly, these relations may be tested in a region of the phase diagram which is outside the LLCP thus avoiding the problems associated to the coexistence region. The central property connected to other water anomalies is the locus of temperatures at which the density along isobars attain a maximum (TMD line) or a minimum (TmD). We have performed computer simulations to evaluate the TMD and TmD for a successful water model, namely, TIP4P/2005. We have also evaluated the vapor-liquid (VL) spinodal in the region of large negative pressures. The shape of these curves and their connection to the extrema of some response functions, in particular the isothermal compressibility and heat capacity at constant pressure, provides very useful information which may help to elucidate the validity of the theoretical proposals. In this way, we are able to present for the first time a comprehensive scenario of the thermodynamic water anomalies for TIP4P/2005 and their relation to the vapor-liquid spinodal. The overall picture shows a remarkable similarity with the corresponding one for the ST2 water model, for which the existence of a LLCP has been demonstrated in recent years. It also provides a hint as to where the long-sought for extrema in response functions might become accessible to experiments.
Collapse
Affiliation(s)
- Miguel A González
- Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Chantal Valeriani
- Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Frédéric Caupin
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - José L F Abascal
- Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Chen IT, Sessoms DA, Sherman Z, Choi E, Vincent O, Stroock AD. Stability Limit of Water by Metastable Vapor-Liquid Equilibrium with Nanoporous Silicon Membranes. J Phys Chem B 2016; 120:5209-22. [PMID: 27223603 DOI: 10.1021/acs.jpcb.6b01618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid can sustain mechanical tension as its pressure drops below the vapor-liquid coexistence line and becomes less than zero, until it reaches the stability limit-the pressure at which cavitation inevitably occurs. For liquid water, its stability limit is still a subject of debate: the results obtained by researchers using a variety of techniques show discrepancies between the values of the stability limit and its temperature dependence as temperature approaches 0 °C. In this work, we present a study of the stability limit of water by the metastable vapor-liquid equilibrium (MVLE) method with nanoporous silicon membranes. We also report on an experimental system which enables tests of the temperature dependence of the stability limit with MVLE. The stability limit we found increases monotonically (larger tension) as temperature approaches 0 °C; this trend contradicts the centrifugal result of Briggs but agrees with the experiments by acoustic cavitation. This result confirms that a quasi-static method can reach stability values similar to that from the dynamic stretching technique, even close to 0 °C. Nevertheless, our results fall in the range of ∼ -20 to -30 MPa, a range that is consistent with the majority of experiments but is far less negative than the limit obtained in experiments involving quartz inclusions and that predicted for homogeneous nucleation.
Collapse
Affiliation(s)
- I-Tzu Chen
- Robert Frederick Smith School of Chemical and Biomolecular Engineering and ‡Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| | - David A Sessoms
- Robert Frederick Smith School of Chemical and Biomolecular Engineering and ‡Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| | - Zachary Sherman
- Robert Frederick Smith School of Chemical and Biomolecular Engineering and ‡Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| | - Eugene Choi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering and ‡Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| | - Olivier Vincent
- Robert Frederick Smith School of Chemical and Biomolecular Engineering and ‡Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| | - Abraham D Stroock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering and ‡Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Vincent O, Sessoms DA, Huber EJ, Guioth J, Stroock AD. Drying by cavitation and poroelastic relaxations in porous media with macroscopic pores connected by nanoscale throats. PHYSICAL REVIEW LETTERS 2014; 113:134501. [PMID: 25302891 DOI: 10.1103/physrevlett.113.134501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 06/04/2023]
Abstract
We investigate the drying dynamics of porous media with two pore diameters separated by several orders of magnitude. Nanometer-sized pores at the edge of our samples prevent air entry, while drying proceeds by heterogeneous nucleation of vapor bubbles--cavitation--in the liquid in micrometer-sized voids within the sample. We show that the dynamics of cavitation and drying are set by the interplay of the deterministic poroelastic mass transport in the porous medium and the stochastic nucleation process. Spatiotemporal patterns emerge in this unusual reaction-diffusion system, with temporal oscillations in the drying rate and variable roughness of the drying front.
Collapse
Affiliation(s)
- Olivier Vincent
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - David A Sessoms
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Erik J Huber
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Jules Guioth
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Abraham D Stroock
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Abstract
Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154], or emanate from a critical point terminating a liquid-liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]. At positive pressure, the LMκT has escaped observation because it lies in the "no man's land" beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man's land at negative pressure.
Collapse
|
11
|
Chiu J, Starr FW, Giovambattista N. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water. J Chem Phys 2014; 140:114504. [DOI: 10.1063/1.4868028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|