1
|
Piranfar A, Moradi Kashkooli F, Zhan W, Bhandari A, Saboury B, Rahmim A, Soltani M. Radiopharmaceutical transport in solid tumors via a 3-dimensional image-based spatiotemporal model. NPJ Syst Biol Appl 2024; 10:39. [PMID: 38609421 PMCID: PMC11015041 DOI: 10.1038/s41540-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA)-targeted radiopharmaceutical therapy is a clinically approved treatment for patients with metastatic castration-resistant prostate cancer (mCRPC). Even though common practice reluctantly follows "one size fits all" approach, medical community believes there is significant room for deeper understanding and personalization of radiopharmaceutical therapies. To pursue this aim, we present a 3-dimensional spatiotemporal radiopharmaceutical delivery model based on clinical imaging data to simulate pharmacokinetic of 177Lu-PSMA within the prostate tumors. The model includes interstitial flow, radiopharmaceutical transport in tissues, receptor cycles, association/dissociation with ligands, synthesis of PSMA receptors, receptor recycling, internalization of radiopharmaceuticals, and degradation of receptors and drugs. The model was studied for a range of values for injection amount (100-1000 nmol), receptor density (10-500 nmol•l-1), and recycling rate of receptors (10-4 to 10-1 min-1). Furthermore, injection type, different convection-diffusion-reaction mechanisms, characteristic time scales, and length scales are discussed. The study found that increasing receptor density, ligand amount, and labeled ligands improved radiopharmaceutical uptake in the tumor. A high receptor recycling rate (0.1 min-1) increased radiopharmaceutical concentration by promoting repeated binding to tumor cell receptors. Continuous infusion results in higher radiopharmaceutical concentrations within tumors compared to bolus administration. These insights are crucial for advancing targeted therapy for prostate cancer by understanding the mechanism of radiopharmaceutical distribution in tumors. Furthermore, measures of characteristic length and advection time scale were computed. The presented spatiotemporal tumor transport model can analyze different physiological parameters affecting 177Lu-PSMA delivery.
Collapse
Affiliation(s)
- Anahita Piranfar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Babak Saboury
- Department of Computational Nuclear Oncology, Institute of Nuclear Medicine, Bethesda, MD, USA
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
2
|
Nalawansha D, Paiva SL, Rafizadeh DN, Pettersson M, Qin L, Crews CM. Targeted Protein Internalization and Degradation by ENDosome TArgeting Chimeras (ENDTACs). ACS CENTRAL SCIENCE 2019; 5:1079-1084. [PMID: 31263767 PMCID: PMC6598169 DOI: 10.1021/acscentsci.9b00224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 05/07/2023]
Abstract
Targeted protein degradation has generated excitement in chemical biology and drug discovery throughout academia and industry. By hijacking the machinery responsible for protein degradation via the ubiquitin proteasome system (UPS), various cellular targets have been selectively degraded. However, since the tools used, often termed PROteolysis TArgeting Chimeras (PROTACs), hijack the intracellular quality control machinery, this technology can only access targets within the cell. Extracellular targets such as growth factors, cytokines, and chemokines bind to cell surface receptors, often initiating aberrant signaling in multiple diseases such as cancer and inflammation. However, efforts to develop small molecule inhibitors for these extracellular target proteins have been challenging. Herein, we developed a proof-of-concept approach to evaluate if extracellular proteins can be internalized and degraded via the receptor-mediated endolysosomal pathway. Using a heterodimeric molecule, termed "ENDosome TArgeting Chimera" (ENDTAC), internalization and degradation of an extracellular recombinant eGFP-HT7 fusion protein was achieved by hijacking the decoy GPCR receptor, CXCR7. This proof-of-concept study suggests that using ENDTACs to co-opt the endosomal-lysosomal degradation pathway, in contrast to PROTACs using the UPS, may provide an avenue for degrading extracellular targets such as cytokines. Overall, the technology described herein provides a novel expansion to the field of targeted protein degradation.
Collapse
Affiliation(s)
- Dhanusha
A. Nalawansha
- Department
of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacey-Lynn Paiva
- Department
of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Diane N. Rafizadeh
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mariell Pettersson
- Department
of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Liena Qin
- Department
of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Department
of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
- E-mail:
| |
Collapse
|
3
|
Li S, Yu B, Wang J, Zheng Y, Zhang H, Walker MJ, Yuan Z, Zhu H, Zhang J, Wang PG, Wang B. Biomarker-Based Metabolic Labeling for Redirected and Enhanced Immune Response. ACS Chem Biol 2018; 13:1686-1694. [PMID: 29792670 DOI: 10.1021/acschembio.8b00350] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Installation of an antibody-recruiting moiety on the surface of disease-relevant cells can lead to the selective destruction of targets by the immune system. Such an approach can be an alternative strategy to traditional chemotherapeutics in cancer therapy and possibly other diseases. Herein we describe the development of a new strategy to selectively label targets with an antibody-recruiting moiety through its covalent and stable installation, complementing existing methods of employing reversible binding. This is achieved through selective delivery of 1,3,4- O-acetyl- N-azidoacetylmannosamine (Ac3ManNAz) to folate receptor-overexpressing cells using an Ac3ManNAz-folate conjugate via a cleavable linker. As such, Ac3ManNAz is converted to cell surface glycan bearing an azido group, which serves as an anchor to introduce l-rhamnose (Rha), a hapten, via a click reaction with aza-dibenzocyclooctyne (DBCO)-Rha. We tested this method in several cell lines including KB, HEK-293, and MCF7 and were able to demonstrate the following: 1) Rha can be selectively installed to the folate receptor overexpressing cell surface and 2) the Rha installed on the target surface can recruit anti-rhamnose (anti-Rha) antibodies, leading to the destruction of target cells via complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP).
Collapse
Affiliation(s)
- Shanshan Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiajia Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Huajie Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People’s Republic of China
| | - Margaret J. Walker
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|