1
|
Kumar A, Dubey A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J Adv Res 2020; 24:337-352. [PMID: 32461810 PMCID: PMC7240055 DOI: 10.1016/j.jare.2020.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/29/2022] Open
Abstract
Plants in nature are constantly exposed to a variety of abiotic and biotic stresses which limits their growth and production. Enhancing crop yield and production to feed exponentially growing global population in a sustainable manner by reduced chemical fertilization and agrochemicals will be a big challenge. Recently, the targeted application of beneficial plant microbiome and their cocktails to counteract abiotic and biotic stress is gaining momentum and becomes an exciting frontier of research. Advances in next generation sequencing (NGS) platform, gene editing technologies, metagenomics and bioinformatics approaches allows us to unravel the entangled webs of interactions of holobionts and core microbiomes for efficiently deploying the microbiome to increase crops nutrient acquisition and resistance to abiotic and biotic stress. In this review, we focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health. This review is significant in providing first-hand information to improve fundamental understanding of the process which helps in shaping rhizosphere microbiome.
Collapse
Affiliation(s)
- Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
2
|
Saad MM, Michalet S, Fossou R, Putnik-Delić M, Crèvecoeur M, Meyer J, de Malézieux C, Hopfgartner G, Maksimović I, Perret X. Loss of NifQ Leads to Accumulation of Porphyrins and Altered Metal-Homeostasis in Nitrogen-Fixing Symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:208-216. [PMID: 30070615 DOI: 10.1094/mpmi-07-18-0188-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Symbiotic nitrogen fixation between legumes and rhizobia involves a coordinated expression of many plant and bacterial genes as well as finely tuned metabolic activities of micro- and macrosymbionts. In spite of such complex interactions, symbiotic proficiency remains a resilient process, with host plants apparently capable of compensating for some deficiencies in rhizobia. What controls nodule homeostasis is still poorly understood and probably varies between plant species. In this respect, the promiscuous Sinorhizobium (Ensifer) fredii strain NGR234 has become a model to assess the relative contribution of single gene products to many symbioses. Here, we describe how a deletion in nifQ of NGR234 (strain NGRΔnifQ) makes nodules of Vigna unguiculata, V. radiata, and Macroptilium atropurpureum but not of the mimisoid tree Leucaena leucocephala, purple-red. This peculiar dark-nodule phenotype did not necessarily correlate with a decreased proficiency of NGRΔnifQ but coincided with a 20-fold or more accumulation of coproporphyrin III and uroporphyrin III in V. unguiculata nodules. Porphyrin accumulation was not restricted to plant cells infected with bacteroids but also extended to the nodule cortex. Nodule metal-homeostasis was altered but not sufficiently to prevent assembly and functioning of nitrogenase. Although the role of NifQ in donating molybdenum during assembly of nitrogenase cofactor FeMo-co makes it essential in free-living diazotrophs, our results highlight the dispensability of NifQ in many legume species.
Collapse
Affiliation(s)
- Maged M Saad
- 1 University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
- 2 King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 6900-2355, Kingdom of Saudi Arabia
| | - Sophie Michalet
- 3 University of Geneva, Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, Bd d'Yvoy 11, CH-1211 Geneva 4, Switzerland
| | - Romain Fossou
- 1 University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | - Michèle Crèvecoeur
- 1 University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Julien Meyer
- 3 University of Geneva, Mass Spectrometry Core Facility (MZ 2.0), Faculty of Sciences, Bd d'Yvoy 11, CH-1211 Geneva 4, Switzerland
| | - Chloé de Malézieux
- 1 University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Gérard Hopfgartner
- 5 University of Geneva, Department of Inorganic and Analytical Chemistry, Faculty of Sciences, 26 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Ivana Maksimović
- 4 University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia; and
| | - Xavier Perret
- 1 University of Geneva, Sciences III, Department of Botany and Plant Biology, Microbiology Unit, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
3
|
Liu A, Contador CA, Fan K, Lam HM. Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. FRONTIERS IN PLANT SCIENCE 2018; 9:1860. [PMID: 30619423 PMCID: PMC6305480 DOI: 10.3389/fpls.2018.01860] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 05/19/2023]
Abstract
Members of the plant family Leguminosae (Fabaceae) are unique in that they have evolved a symbiotic relationship with rhizobia (a group of soil bacteria that can fix atmospheric nitrogen). Rhizobia infect and form root nodules on their specific host plants before differentiating into bacteroids, the symbiotic form of rhizobia. This complex relationship involves the supply of C4-dicarboxylate and phosphate by the host plants to the microsymbionts that utilize them in the energy-intensive process of fixing atmospheric nitrogen into ammonium, which is in turn made available to the host plants as a source of nitrogen, a macronutrient for growth. Although nitrogen-fixing bacteroids are no longer growing, they are metabolically active. The symbiotic process is complex and tightly regulated by both the host plants and the bacteroids. The metabolic pathways of carbon, nitrogen, and phosphate are heavily regulated in the host plants, as they need to strike a fine balance between satisfying their own needs as well as those of the microsymbionts. A network of transporters for the various metabolites are responsible for the trafficking of these essential molecules between the two partners through the symbiosome membrane (plant-derived membrane surrounding the bacteroid), and these are in turn regulated by various transcription factors that control their expressions under different environmental conditions. Understanding this complex process of symbiotic nitrogen fixation is vital in promoting sustainable agriculture and enhancing soil fertility.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carolina A. Contador
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kejing Fan
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|