1
|
Pal S, Boyer D, Dagdug L, Pal A. Channel-facilitated transport under resetting dynamics. J Chem Phys 2024; 161:144114. [PMID: 39387414 DOI: 10.1063/5.0231306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
The transport of particles through channels holds immense significance in physics, chemistry, and biological sciences. For instance, the motion of solutes through biological membranes is facilitated by specialized proteins that create water-filled channels. Valuable insights can be obtained by studying the transition paths of particles through a channel and gathering information on their lifetimes inside the channel as well as their exit probabilities. In a similar vein, we consider a one-dimensional model of channel-facilitated transport where a diffusive particle is subject to attractive interactions with the walls of the channel. We study the statistics of conditional and unconditional escape times in the presence of resetting-an intermittent dynamics that brings the particle back to its initial coordinate stochastically. We determine analytically the physical conditions under which such a resetting mechanism becomes beneficial for the faster escape of the particles from the channel, thus enhancing transport. Our theory has been verified with the aid of Brownian dynamics simulations for various interaction strengths and extents. The overall results presented herein highlight the scope of resetting-based strategies to be universally promising for complex transport processes of single or long molecules through biological membranes.
Collapse
Affiliation(s)
- Suvam Pal
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata, India
| | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Leonardo Dagdug
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México 09340, Mexico
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
2
|
Biswas A, Kundu A, Pal A. Search with stochastic home returns can expedite classical first passage under resetting. Phys Rev E 2024; 110:L042101. [PMID: 39562855 DOI: 10.1103/physreve.110.l042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/05/2024] [Indexed: 11/21/2024]
Abstract
Classical first passage under resetting is a paradigm in the search process. Despite its multitude of applications across interdisciplinary sciences, experimental realizations of such resetting processes posit practical challenges in calibrating these zero time irreversible transitions. Here, we consider a strategy in which resetting is performed using finite-time return protocols in lieu of instantaneous returns. These controls could also be accompanied with random fluctuations or errors allowing target detection even during the return phase. To better understand the phenomena, we develop a unified renewal approach that can encapsulate arbitrary search processes centered around home in a fairly general topography containing targets, various resetting times, and return mechanisms in arbitrary dimensions. While such finite-time protocols would apparently seem to prolong the overall search time in comparison to the instantaneous resetting process, we show on the contrary that a significant speed-up can be gained by leveraging the stochasticity in home returns. The formalism is then explored to reveal a universal criterion distilling the benefits of this strategy. We demonstrate how this general principle can be utilized to improve overall performance of a one-dimensional diffusive search process reinforced with experimentally feasible parameters. We believe that such strategies designed with inherent randomness can be made optimal with precise controllability in complex search processes.
Collapse
|
3
|
Ziegler KF, Joshi K, Wright CS, Roy S, Caruso W, Biswas RR, Iyer-Biswas S. Scaling of stochastic growth and division dynamics: A comparative study of individual rod-shaped cells in the Mother Machine and SChemostat platforms. Mol Biol Cell 2024; 35:ar78. [PMID: 38598301 PMCID: PMC11238078 DOI: 10.1091/mbc.e23-11-0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Microfluidic platforms enable long-term quantification of stochastic behaviors of individual bacterial cells under precisely controlled growth conditions. Yet, quantitative comparisons of physiological parameters and cell behaviors of different microorganisms in different experimental and device modalities is not available due to experiment-specific details affecting cell physiology. To rigorously assess the effects of mechanical confinement, we designed, engineered, and performed side-by-side experiments under otherwise identical conditions in the Mother Machine (with confinement) and the SChemostat (without confinement), using the latter as the ideal comparator. We established a protocol to cultivate a suitably engineered rod-shaped mutant of Caulobacter crescentus in the Mother Machine and benchmarked the differences in stochastic growth and division dynamics with respect to the SChemostat. While the single-cell growth rate distributions are remarkably similar, the mechanically confined cells in the Mother Machine experience a substantial increase in interdivision times. However, we find that the division ratio distribution precisely compensates for this increase, which in turn reflects identical emergent simplicities governing stochastic intergenerational homeostasis of cell sizes across device and experimental configurations, provided the cell sizes are appropriately mean-rescaled in each condition. Our results provide insights into the nature of the robustness of the bacterial growth and division machinery.
Collapse
Affiliation(s)
- Karl F. Ziegler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health, Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
| | - Charles S. Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Shaswata Roy
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
| | - Will Caruso
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
| | - Rudro R. Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
4
|
Bebon R, Godec A. Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime. PHYSICAL REVIEW LETTERS 2023; 131:237101. [PMID: 38134782 DOI: 10.1103/physrevlett.131.237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023]
Abstract
We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
Collapse
Affiliation(s)
- Rick Bebon
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Nam KM, Gunawardena J. The linear framework II: using graph theory to analyse the transient regime of Markov processes. Front Cell Dev Biol 2023; 11:1233808. [PMID: 38020901 PMCID: PMC10656611 DOI: 10.3389/fcell.2023.1233808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
The linear framework uses finite, directed graphs with labelled edges to model biomolecular systems. Graph vertices represent chemical species or molecular states, edges represent reactions or transitions and edge labels represent rates that also describe how the system is interacting with its environment. The present paper is a sequel to a recent review of the framework that focussed on how graph-theoretic methods give insight into steady states as rational algebraic functions of the edge labels. Here, we focus on the transient regime for systems that correspond to continuous-time Markov processes. In this case, the graph specifies the infinitesimal generator of the process. We show how the moments of the first-passage time distribution, and related quantities, such as splitting probabilities and conditional first-passage times, can also be expressed as rational algebraic functions of the labels. This capability is timely, as new experimental methods are finally giving access to the transient dynamic regime and revealing the computations and information processing that occur before a steady state is reached. We illustrate the concepts, methods and formulas through examples and show how the results may be used to illuminate previous findings in the literature.
Collapse
Affiliation(s)
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Cherayil BJ. Survival probabilities and first-passage distributions of self-propelled particles in spherical cavities. Phys Rev E 2023; 108:054607. [PMID: 38115486 DOI: 10.1103/physreve.108.054607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
A model of self-propelled motion in a closed compartment containing simple or complex fluids is formulated in this paper in terms of the dynamics of a point particle moving in a spherical cavity under the action of random thermal forces and exponentially correlated noise. The particle's time evolution is governed by a generalized Langevin equation (GLE) in which the memory function, connected to the thermal forces by a fluctuation-dissipation relation, is described by Jeffrey's model of viscoelasticity (which reduces to a model of ordinary viscous dynamics in a suitable limit). The GLE is transformed exactly to a Fokker-Planck equation that in spherical polar coordinates is in turn found to admit of an exact solution for the particle's probability density function under absorbing boundary conditions at the surface of the sphere. The solution is used to derive an expression (that is also exact) for the survival probability of the particle in the sphere, starting from its center, which is then used to calculate the distribution of the particle's first-passage times to the boundary. The behavior of these quantities is investigated as a function of the Péclet number and the persistence time of the athermal forces, providing insight into the effects of nonequilibrium fluctuations on confined particle motion in three dimensions.
Collapse
Affiliation(s)
- Binny J Cherayil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
7
|
Rivoire O. How Flexibility Can Enhance Catalysis. PHYSICAL REVIEW LETTERS 2023; 131:088401. [PMID: 37683166 DOI: 10.1103/physrevlett.131.088401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Conformational changes are observed in many enzymes, but their role in catalysis is highly controversial. Here we present a theoretical model that illustrates how rigid catalysts can be fundamentally limited and how a conformational change induced by substrate binding can overcome this limitation, ultimately enabling barrier-free catalysis. The model is deliberately minimal, but the principle it illustrates is general and consistent with unique features of proteins as well as with previous informal proposals to explain the superiority of enzymes over other classes of catalysts. Implementing the discriminative switch suggested by the model could help overcome limitations currently encountered in the design of artificial catalysts.
Collapse
Affiliation(s)
- Olivier Rivoire
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, and Gulliver, CNRS, ESPCI, Université Paris Sciences et Lettres, 75005 Paris, France
| |
Collapse
|
8
|
Guo S, Saha I, Saffarian S, Johnson ME. Structure of the HIV immature lattice allows for essential lattice remodeling within budded virions. eLife 2023; 12:e84881. [PMID: 37435945 PMCID: PMC10361719 DOI: 10.7554/elife.84881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/12/2023] [Indexed: 07/13/2023] Open
Abstract
For HIV virions to become infectious, the immature lattice of Gag polyproteins attached to the virion membrane must be cleaved. Cleavage cannot initiate without the protease formed by the homo-dimerization of domains linked to Gag. However, only 5% of the Gag polyproteins, termed Gag-Pol, carry this protease domain, and they are embedded within the structured lattice. The mechanism of Gag-Pol dimerization is unknown. Here, we use spatial stochastic computer simulations of the immature Gag lattice as derived from experimental structures, showing that dynamics of the lattice on the membrane is unavoidable due to the missing 1/3 of the spherical protein coat. These dynamics allow for Gag-Pol molecules carrying the protease domains to detach and reattach at new places within the lattice. Surprisingly, dimerization timescales of minutes or less are achievable for realistic binding energies and rates despite retaining most of the large-scale lattice structure. We derive a formula allowing extrapolation of timescales as a function of interaction free energy and binding rate, thus predicting how additional stabilization of the lattice would impact dimerization times. We further show that during assembly, dimerization of Gag-Pol is highly likely and therefore must be actively suppressed to prevent early activation. By direct comparison to recent biochemical measurements within budded virions, we find that only moderately stable hexamer contacts (-12kBT<∆G<-8kBT) retain both the dynamics and lattice structures that are consistent with experiment. These dynamics are likely essential for proper maturation, and our models quantify and predict lattice dynamics and protease dimerization timescales that define a key step in understanding formation of infectious viruses.
Collapse
Affiliation(s)
- Sikao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of HealthFrederickUnited States
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of UtahSalt Lake CityUnited States
- Department of Physics and Astronomy, University of UtahSalt Lake CityUnited States
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
9
|
Di Trapani F, Franosch T, Caraglio M. Active Brownian particles in a circular disk with an absorbing boundary. Phys Rev E 2023; 107:064123. [PMID: 37464643 DOI: 10.1103/physreve.107.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/27/2023] [Indexed: 07/20/2023]
Abstract
We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator in terms of the perturbed eigenvalues and eigenfunctions. Alternatively, we show that the propagator can be expressed as a combination of the equilibrium eigenstates with weights depending only on time and on the initial conditions, and obeying exact iterative relations. Our solution allows also obtaining the survival probability and the first-passage time distribution. These latter quantities exhibit peculiarities induced by the nonequilibrium character of the dynamics; in particular, they display a strong dependence on the activity of the particle and, to a less extent, also on its rotational diffusivity.
Collapse
Affiliation(s)
- Francesco Di Trapani
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Hass JB, Carroll-Godfrey AN, Corwin I, Corwin EI. Anomalous fluctuations of extremes in many-particle diffusion. Phys Rev E 2023; 107:L022101. [PMID: 36932551 DOI: 10.1103/physreve.107.l022101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In many-particle diffusions, particles that move the furthest and fastest can play an outsized role in physical phenomena. A theoretical understanding of the behavior of such extreme particles is nascent. A classical model, in the spirit of Einstein's treatment of single-particle diffusion, has each particle taking independent homogeneous random walks. This, however, neglects the fact that all particles diffuse in a common and often inhomogeneous environment that can affect their motion. A more sophisticated model treats this common environment as a space-time random biasing field which influences each particle's independent motion. While the bulk (or typical particle) behavior of these two models has been found to match to high degree, recent theoretical work of G. Barraquand and I. Corwin, Probab. Theory Relat. Fields 167, 1057 (2017)0178-805110.1007/s00440-016-0699-z and G. Barraquand and P. Le Doussal, J. Phys. A: Math. Theor. 53, 215002 (2020)1751-811310.1088/1751-8121/ab8b39 on a one-dimensional exactly solvable version of this random environment model suggests that the extreme behavior is quite different between the two models. We transform these asymptotic (in system size and time) results into physically applicable predictions. Using high-precision numerical simulations we reconcile different asymptotic phases in a manner that matches numerics down to realistic system sizes, amenable to experimental confirmation. We characterize the behavior of extreme diffusion in the random environment model by the presence of a new phase with anomalous fluctuations related to the Kardar-Parisi-Zhang universality class and equation.
Collapse
Affiliation(s)
- Jacob B Hass
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Aileen N Carroll-Godfrey
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Ivan Corwin
- Department of Mathematics, Columbia University, New York, New York 10027, USA
| | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
11
|
Nagel AM, Magill M, de Haan HW. Studying first passage problems using neural networks: A case study in the slit-well microfluidic device. Phys Rev E 2022; 106:025311. [PMID: 36109883 DOI: 10.1103/physreve.106.025311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
This study presents deep neural network solutions to a time-integrated Smoluchowski equation modeling the mean first passage time of nanoparticles traversing the slit-well microfluidic device. This physical scenario is representative of a broader class of parametrized first passage problems in which key output metrics are dictated by a complicated interplay of problem parameters and system geometry. Specifically, whereas these types of problems are commonly studied using particle simulations of stochastic differential equation models, here the corresponding partial differential equation model is solved using a method based on deep neural networks. The results illustrate that the neural network method is synergistic with the time-integrated Smoluchowski model: together, these are used to construct continuous mappings from key physical inputs (applied voltage and particle diameter) to key output metrics (mean first passage time and effective mobility). In particular, this capability is a unique advantage of the time-integrated Smoluchowski model over the corresponding stochastic differential equation models. Furthermore, the neural network method is demonstrated to easily and reliably handle geometry-modifying parameters, which is generally difficult to accomplish using other methods.
Collapse
Affiliation(s)
- Andrew M Nagel
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario, Canada L1H7K4
| | - Martin Magill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario, Canada L1H7K4
| | - Hendrick W de Haan
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario, Canada L1H7K4
| |
Collapse
|
12
|
Microscale structural changes of individual fibrin fibers during fibrinolysis. Acta Biomater 2022; 141:114-122. [PMID: 35007782 PMCID: PMC8898298 DOI: 10.1016/j.actbio.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Fibrinolysis is the enzymatic digestion of fibrin, the primary structural component in blood clots. Mechanisms of fibrin fiber digestion during lysis have long been debated and obtaining detailed structural knowledge of these processes is important for developing effective clinical approaches to treat ischemic stroke and pulmonary embolism. Using dynamic fluorescence microscopy, we studied the time-resolved digestion of individual fibrin fibers by the fibrinolytic enzyme plasmin. We found that plasmin molecules digest fibers along their entire lengths, but that the rates of digestion are non-uniform, resulting in cleavage at a single location along the fiber. Using mathematical modeling we estimated the rate of plasmin arrival at the fiber surface and the number of digestion sites on a fiber. We also investigated correlations between local fiber digestion rates, cleavage sites, and fiber properties such as initial thickness. Finally, we uncovered a previously unknown tension-dependent mechanism that pulls fibers apart during digestion. Taken together these results promote a paradigm shift in understanding mechanisms of fibrinolysis and underscore the need to consider fibrin tension when assessing fibrinolytic approaches. STATEMENT OF SIGNIFICANCE: We developed a method for interrogating lysis of individual fibrin fibers, enabling the time-resolved observation of individual fiber digestion for the first time. Our results resolve longstanding disagreements about fibrinolytic processes and reveal previously unknown mechanisms that also play a role. Also, we developed the first microscale mathematical model of plasmin-fibrin interaction, which predicts the number of plasmin molecules on each fiber and can serve as a framework for investigating novel therapeutics.
Collapse
|
13
|
Ali MZ, Brewster RC. Controlling gene expression timing through gene regulatory architecture. PLoS Comput Biol 2022; 18:e1009745. [PMID: 35041641 PMCID: PMC8797265 DOI: 10.1371/journal.pcbi.1009745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/28/2022] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how gene expression timing in the single-input module motif can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to that for a constitutive gene. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at “extremes” of network size or binding affinity, but rather in an intermediate window of either quantity.
Collapse
Affiliation(s)
- Md Zulfikar Ali
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Robert C. Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sharpe DJ, Wales DJ. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Phys Rev E 2021; 104:015301. [PMID: 34412280 DOI: 10.1103/physreve.104.015301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022]
Abstract
We describe state-reduction algorithms for the analysis of first-passage processes in discrete- and continuous-time finite Markov chains. We present a formulation of the graph transformation algorithm that allows for the evaluation of exact mean first-passage times, stationary probabilities, and committor probabilities for all nonabsorbing nodes of a Markov chain in a single computation. Calculation of the committor probabilities within the state-reduction formalism is readily generalizable to the first hitting problem for any number of alternative target states. We then show that a state-reduction algorithm can be formulated to compute the expected number of times that each node is visited along a first-passage path. Hence, all properties required to analyze the first-passage path ensemble (FPPE) at both a microscopic and macroscopic level of detail, including the mean and variance of the first-passage time distribution, can be computed using state-reduction methods. In particular, we derive expressions for the probability that a node is visited along a direct transition path, which proceeds without returning to the initial state, considering both the nonequilibrium and equilibrium (steady-state) FPPEs. The reactive visitation probability provides a rigorous metric to quantify the dynamical importance of a node for the productive transition between two endpoint states and thus allows the local states that facilitate the dominant transition mechanisms to be readily identified. The state-reduction procedures remain numerically stable even for Markov chains exhibiting metastability, which can be severely ill-conditioned. The rare event regime is frequently encountered in realistic models of dynamical processes, and our methodology therefore provides valuable tools for the analysis of Markov chains in practical applications. We illustrate our approach with numerical results for a kinetic network representing a structural transition in an atomic cluster.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, and Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. PHYSICS REPORTS 2021; 921:1-53. [PMID: 35892075 PMCID: PMC9306291 DOI: 10.1016/j.physrep.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular "nanomachine" known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the cell nucleus and the cytoplasm. NPCs combine high molecular specificity of transport with high throughput and speed, and are highly robust with respect to molecular noise and structural perturbations. Remarkably, the functional mechanisms of NPC transport are highly conserved among eukaryotes, from yeast to humans, despite significant differences in the molecular components among various species. The NPC is the largest macromolecular complex in the cell. Yet, despite its significant complexity, it has become clear that its principles of operation can be largely understood based on fundamental physical concepts, as have emerged from a combination of experimental methods of molecular cell biology, biophysics, nanoscience and theoretical and computational modeling. Indeed, many aspects of NPC function can be recapitulated in artificial mimics with a drastically reduced complexity compared to biological pores. We review the current physical understanding of the NPC architecture and function, with the focus on the critical analysis of experimental studies in cells and artificial NPC mimics through the lens of theoretical and computational models. We also discuss the connections between the emerging concepts of NPC operation and other areas of biophysics and bionanotechnology.
Collapse
Affiliation(s)
- Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado, Boulder CO 80309, United States of America
| | - Edward A. Lemke
- Biocenter Mainz, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anton Zilman
- Department of Physics and Institute for Biomedical Engineering (IBME), University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
16
|
Scher Y, Reuveni S. Unified Approach to Gated Reactions on Networks. PHYSICAL REVIEW LETTERS 2021; 127:018301. [PMID: 34270310 DOI: 10.1103/physrevlett.127.018301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/20/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
For two molecules to react they first have to meet. Yet, reaction times are rarely on par with the first-passage times that govern such molecular encounters. A prime reason for this discrepancy is stochastic transitions between reactive and nonreactive molecular states, which results in effective gating of product formation and altered reaction kinetics. To better understand this phenomenon we develop a unifying approach to gated reactions on networks. We first show that the mean and distribution of the gated reaction time can always be expressed in terms of ungated first-passage and return times. This relation between gated and ungated kinetics is then explored to reveal universal features of gated reactions. The latter are exemplified using a diverse set of case studies which are also used to expose the exotic kinetics that arises due to molecular gating.
Collapse
Affiliation(s)
- Yuval Scher
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Shlomi Reuveni
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
17
|
Mishra B, Johnson ME. Speed limits of protein assembly with reversible membrane localization. J Chem Phys 2021; 154:194101. [PMID: 34240891 PMCID: PMC8131109 DOI: 10.1063/5.0045867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Protein assembly is often studied in a three-dimensional solution, but a significant fraction of binding events involve proteins that can reversibly bind and diffuse along a two-dimensional surface. In a recent study, we quantified how proteins can exploit the reduced dimensionality of the membrane to trigger complex formation. Here, we derive a single expression for the characteristic timescale of this multi-step assembly process, where the change in dimensionality renders rates and concentrations effectively time-dependent. We find that proteins can accelerate dimer formation due to an increase in relative concentration, driving more frequent collisions, which often win out over slow-downs due to diffusion. Our model contains two protein populations that dimerize with one another and use a distinct site to bind membrane lipids, creating a complex reaction network. However, by identifying two major rate-limiting pathways to reach an equilibrium steady-state, we derive an excellent approximation for the mean first passage time when lipids are in abundant supply. Our theory highlights how the "sticking rate" or effective adsorption coefficient of the membrane is central in controlling timescales. We also derive a corrected localization rate to quantify how the geometry of the system and diffusion can reduce rates of membrane localization. We validate and test our results using kinetic and particle-based reaction-diffusion simulations. Our results establish how the speed of key assembly steps can shift by orders-of-magnitude when membrane localization is possible, which is critical to understanding mechanisms used in cells.
Collapse
Affiliation(s)
- Bhavya Mishra
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA
| | - Margaret E. Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA
| |
Collapse
|
18
|
Ray S, Reuveni S. Resetting transition is governed by an interplay between thermal and potential energy. J Chem Phys 2021; 154:171103. [PMID: 34241053 DOI: 10.1063/5.0049642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A dynamical process that takes a random time to complete, e.g., a chemical reaction, may either be accelerated or hindered due to resetting. Tuning system parameters, such as temperature, viscosity, or concentration, can invert the effect of resetting on the mean completion time of the process, which leads to a resetting transition. Although the resetting transition has been recently studied for diffusion in a handful of model potentials, it is yet unknown whether the results follow any universality in terms of well-defined physical parameters. To bridge this gap, we propose a general framework that reveals that the resetting transition is governed by an interplay between the thermal and potential energy. This result is illustrated for different classes of potentials that are used to model a wide variety of stochastic processes with numerous applications.
Collapse
Affiliation(s)
- Somrita Ray
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, and The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shlomi Reuveni
- School of Chemistry, The Center for Physics and Chemistry of Living Systems, The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, and The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Smart M, Goyal S, Zilman A. Roles of phenotypic heterogeneity and microenvironment feedback in early tumor development. Phys Rev E 2021; 103:032407. [PMID: 33862830 DOI: 10.1103/physreve.103.032407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The local microenvironment of a tumor plays an important and commonly observed role in cancer development and progression. Dynamic changes in the tissue microenvironment are thought to epigenetically disrupt healthy cellular phenotypes and drive cancer incidence. Despite the experimental work in this area there are no conceptual models to understand the interplay between the epigenetic dysregulation in the microenvironment of early tumors and the appearance of cancer driver mutations. Here, we develop a minimal model of the tissue microenvironment which considers three interacting subpopulations: healthy, phenotypically dysregulated, and mutated cancer cells. Healthy cells can epigenetically (reversibly) transition to the dysregulated phenotype, and from there to the cancer state. The epigenetic transition rates of noncancer cells can be influenced by the number of cancer cells in the microenvironment (termed microenvironment feedback). Our model delineates the regime in which microenvironment feedback accelerates the rate of cancer initiation. In addition, the model shows when and how microenvironment feedback may inhibit cancer progression. We discuss how our framework may provide resolution to some of the puzzling experimental observations of slow cancer progression.
Collapse
Affiliation(s)
- Matthew Smart
- Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario M5S 3G9, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
20
|
Paci G, Zheng T, Caria J, Zilman A, Lemke EA. Molecular determinants of large cargo transport into the nucleus. eLife 2020; 9:e55963. [PMID: 32692309 PMCID: PMC7375812 DOI: 10.7554/elife.55963] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
Nucleocytoplasmic transport is tightly regulated by the nuclear pore complex (NPC). Among the thousands of molecules that cross the NPC, even very large (>15 nm) cargoes such as pathogens, mRNAs and pre-ribosomes can pass the NPC intact. For these cargoes, there is little quantitative understanding of the requirements for their nuclear import, especially the role of multivalent binding to transport receptors via nuclear localisation sequences (NLSs) and the effect of size on import efficiency. Here, we assayed nuclear import kinetics of 30 large cargo models based on four capsid-like particles in the size range of 17-36 nm, with tuneable numbers of up to 240 NLSs. We show that the requirements for nuclear transport can be recapitulated by a simple two-parameter biophysical model that correlates the import flux with the energetics of large cargo transport through the NPC. Together, our results reveal key molecular determinants of large cargo import in cells.
Collapse
Affiliation(s)
- Giulia Paci
- Biocentre, Johannes Gutenberg-University MainzMainzGermany
- Institute of Molecular BiologyMainzGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Tiantian Zheng
- Department of Physics, University of TorontoTorontoCanada
| | - Joana Caria
- Biocentre, Johannes Gutenberg-University MainzMainzGermany
- Institute of Molecular BiologyMainzGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Anton Zilman
- Department of Physics, University of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical Engineering (IBBME), University of TorontoTorontoCanada
| | - Edward A Lemke
- Biocentre, Johannes Gutenberg-University MainzMainzGermany
- Institute of Molecular BiologyMainzGermany
- European Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
21
|
Qiu B, Zhou T, Zhang J. Stochastic fluctuations in apoptotic threshold of tumour cells can enhance apoptosis and combat fractional killing. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190462. [PMID: 32257298 PMCID: PMC7062090 DOI: 10.1098/rsos.190462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Fractional killing, which is a significant impediment to successful chemotherapy, is observed even in a population of genetically identical cancer cells exposed to apoptosis-inducing agents. This phenomenon arises not from genetic mutation but from cell-to-cell variation in the activation timing and level of the proteins that regulates apoptosis. To understand the mechanism behind the phenomenon, we formulate complex fractional killing processes as a first-passage time (FPT) problem with a stochastically fluctuating boundary. Analytical calculations are performed for the FPT distribution in a toy model of stochastic p53 gene expression, where the cancer cell is killed only when the p53 expression level crosses an active apoptotic threshold. Counterintuitively, we find that threshold fluctuations can effectively enhance cellular killing by significantly decreasing the mean time that the p53 protein reaches the threshold level for the first time. Moreover, faster fluctuations lead to the killing of more cells. These qualitative results imply that fluctuations in threshold are a non-negligible stochastic source, and can be taken as a strategy for combating fractional killing of cancer cells.
Collapse
Affiliation(s)
- Baohua Qiu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangzhou, Guangdong Province, People's Republic of China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
22
|
Cao M, Qiu B, Zhou T, Zhang J. Control strategies for the timing of intracellular events. Phys Rev E 2020; 100:062401. [PMID: 31962487 DOI: 10.1103/physreve.100.062401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 11/07/2022]
Abstract
While the timing of intracellular events is essential for many cellular processes, gene expression inside a single cell can exhibit substantial cell-to-cell variability, raising the question of how cells ensure precision in event timing despite such stochasticity. We address this question by analyzing a biologically reasonable model of gene expression in the context of first passage time (FPT), focusing on two experimentally measurable statistics: mean FPT (MFPT) and timing variability (TV). We show that (1) transcriptional burst size (BS) and burst frequency (BF) can minimize the TV; (2) translational BS monotonically reduces the MFPT to a nonzero low bound; (3) the timescale of promoter kinetics can minimize both the MFPT and the TV, depending on the ratio of the on-switching rate over the off-switching rate; and (4) positive feedback regulation of any form can all minimize the TV, whereas negative feedback regulation of transcriptional BF or BS always enhances the TV. These control strategies can have broad implications for diverse cellular processes relying on precise temporal triggering of events.
Collapse
Affiliation(s)
- Mengfang Cao
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Baohua Qiu
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jiajun Zhang
- Key Laboratory of Computational Mathematics, Guangdong Province, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
23
|
Ghosh S, Dutta A, Patra S, Sato J, Nishinari K, Chowdhury D. Biologically motivated asymmetric exclusion process: Interplay of congestion in RNA polymerase traffic and slippage of nascent transcript. Phys Rev E 2019; 99:052122. [PMID: 31212543 DOI: 10.1103/physreve.99.052122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Indexed: 02/03/2023]
Abstract
We develop a theoretical framework, based on an exclusion process, that is motivated by a biological phenomenon called transcript slippage (TS). In this model a discrete lattice represents a DNA strand while each of the particles that hop on it unidirectionally, from site to site, represents a RNA polymerase (RNAP). While walking like a molecular motor along a DNA track in a step-by-step manner, a RNAP simultaneously synthesizes an RNA chain; in each forward step it elongates the nascent RNA molecule by one unit, using the DNA track also as the template. At some special "slippery" position on the DNA, which we represent as a defect on the lattice, a RNAP can lose its grip on the nascent RNA and the latter's consequent slippage results in a final product that is either longer or shorter than the corresponding DNA template. We develop an exclusion model for RNAP traffic where the kinetics of the system at the defect site captures key features of TS events. We demonstrate the interplay of the crowding of RNAPs and TS. A RNAP has to wait at the defect site for a longer period in more congested RNAP traffic, thereby increasing the likelihood of its suffering a larger number of TS events. The qualitative trends of some of our results for a simple special case of our model are consistent with experimental observations. The general theoretical framework presented here will be useful for guiding future experimental queries and for analysis of the experimental data with more detailed versions of the same model.
Collapse
Affiliation(s)
- Soumendu Ghosh
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | - Annwesha Dutta
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | - Jun Sato
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Katsuhiro Nishinari
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | | |
Collapse
|
24
|
Pal A, Eliazar I, Reuveni S. First Passage under Restart with Branching. PHYSICAL REVIEW LETTERS 2019; 122:020602. [PMID: 30720306 DOI: 10.1103/physrevlett.122.020602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/02/2018] [Indexed: 05/27/2023]
Abstract
First passage under restart with branching is proposed as a generalization of first passage under restart. Strong motivation to study this generalization comes from the observation that restart with branching can expedite the completion of processes that cannot be expedited with simple restart; yet a sharp and quantitative formulation of this statement is still lacking. We develop a comprehensive theory of first passage under restart with branching. This reveals that two widely applied measures of statistical dispersion-the coefficient of variation and the Gini index-come together to determine how restart with branching affects the mean completion time of an arbitrary stochastic process. The universality of this result is demonstrated and its connection to extreme value theory is also pointed out and explored.
Collapse
Affiliation(s)
- Arnab Pal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Shlomi Reuveni
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
25
|
First passage events in biological systems with non-exponential inter-event times. Sci Rep 2018; 8:15054. [PMID: 30305644 PMCID: PMC6180141 DOI: 10.1038/s41598-018-32961-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/12/2018] [Indexed: 11/09/2022] Open
Abstract
It is often possible to model the dynamics of biological systems as a series of discrete transitions between a finite set of observable states (or compartments). When the residence times in each state, or inter-event times more generally, are exponentially distributed, then one can write a set of ordinary differential equations, which accurately describe the evolution of mean quantities. Non-exponential inter-event times can also be experimentally observed, but are more difficult to analyse mathematically. In this paper, we focus on the computation of first passage events and their probabilities in biological systems with non-exponential inter-event times. We show, with three case studies from Molecular Immunology, Virology and Epidemiology, that significant errors are introduced when drawing conclusions based on the assumption that inter-event times are exponentially distributed. Our approach allows these errors to be avoided with the use of phase-type distributions that approximate arbitrarily distributed inter-event times.
Collapse
|
26
|
Pal A, Reuveni S. First Passage under Restart. PHYSICAL REVIEW LETTERS 2017; 118:030603. [PMID: 28157357 DOI: 10.1103/physrevlett.118.030603] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 05/27/2023]
Abstract
First passage under restart has recently emerged as a conceptual framework suitable for the description of a wide range of phenomena, but the endless variety of ways in which restart mechanisms and first passage processes mix and match hindered the identification of unifying principles and general truths. Hope that these exist came from a recently discovered universality displayed by processes under optimal, constant rate, restart-but extensions and generalizations proved challenging as they marry arbitrarily complex processes and restart mechanisms. To address this challenge, we develop a generic approach to first passage under restart. Key features of diffusion under restart-the ultimate poster boy for this wide and diverse class of problems-are then shown to be completely universal.
Collapse
Affiliation(s)
- Arnab Pal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shlomi Reuveni
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|