1
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
3
|
Bilal M, Iqbal HMN. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends. Crit Rev Food Sci Nutr 2020; 60:2052-2066. [PMID: 31210055 DOI: 10.1080/10408398.2019.1627284] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the recent progress in biotechnology, a wide variety of novel enzymes with unique physicochemical properties and diverse applications has been introduced, and new application list continues to extend in the future. Enzymes obtained from microorganisms, including bacteria, fungi, yeast are widely applied in numerous food formulations for intensifying their texture and taste. Owing to several desirable characteristics such as easy, cost-efficient and stable production, microbial-derived enzymes are preferred source in contrast to animals or plants. Enzymatic processes have a considerable impact in controlling the characteristics such as (1) physiochemical properties, (2) rheological functionalities, (3) facile process as compared to the chemical-based processing, (4) no or minimal consumption of harsh chemicals, (5) overall cost-effective ratio, (6) sensory and flavor qualities, and (7) intensifying the stability, shelf life and overall quality of the product, etc. in the food industry. Also, enzyme-catalyzed processing has also been designed for new food applications such as extraction of bioactive compounds, nutrient-rich and texture improved foods production, and eliminating food safety hazards. Herein, we reviewed recent applications of food-processing enzymes and highlighted promising technologies to diversify their application range in food industries. Immobilization technology enabled biocatalysts to be used cost-effectively due to reusability with negligible or no activity loss. Integrated progress in novel enzyme discovery, and recombinant DNA technology, as well as protein engineering and bioprocess engineering strategies, are believed to rapidly propagate biocatalysis at industrial-scale food processing or green and sustainable chemical manufacturing.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, N.L., Mexico
| |
Collapse
|
4
|
Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC. Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 2019; 116:1449-1462. [PMID: 30739333 PMCID: PMC6836876 DOI: 10.1002/bit.26951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Chapman Wright
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | - Anna Tai
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Yoseph Tsegaye
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Carl Co
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | | | - Darren Platt
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Joel R Cherry
- Research and Development, Amyris Inc., Emeryville, California
| | | |
Collapse
|