1
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
2
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
3
|
Giacometti RD, Salinas JC, Østergaard ME, Swayze EE, Seth PP, Hanessian S. Design, synthesis, and duplex-stabilizing properties of conformationally constrained tricyclic analogues of LNA. Org Biomol Chem 2016; 14:2034-40. [PMID: 26765794 DOI: 10.1039/c5ob02576a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The design, synthesis and biophysical evaluation of two highly-constrained tricyclic analogues of locked nucleic acid (LNA), which restrict rotation around the C4'-C5'-exocyclic bond (torsion angle γ) and enhance hydrophobicity in the minor groove and along the major groove, are reported. A structural model that provides insights into the sugar-phosphate backbone conformations required for efficient hybridization to complementary nucleic acids is also presented.
Collapse
Affiliation(s)
- Robert D Giacometti
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
| | - Juan C Salinas
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
| | - Michael E Østergaard
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Eric E Swayze
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Downtown Station, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
4
|
Abstract
Recent studies have led to a greater appreciation of the diverse roles RNAs play in maintaining normal cellular function and how they contribute to disease pathology, broadening the number of potential therapeutic targets. Antisense oligonucleotides are the most direct means to target RNA in a selective manner and have become an established platform technology for drug discovery. There are multiple molecular mechanisms by which antisense oligonucleotides can be used to modulate RNAs in cells, including promoting the degradation of the targeted RNA or modulating RNA function without degradation. Antisense drugs utilizing various antisense mechanisms are demonstrating therapeutic potential for the treatment of a broad variety of diseases. This review focuses on some of the advances that have taken place in translating antisense technology from the bench to the clinic.
Collapse
Affiliation(s)
| | | | - Nguyen Pham
- Ionis Pharmaceuticals, Carlsbad, California 92010;
| | - Eric Swayze
- Ionis Pharmaceuticals, Carlsbad, California 92010;
| | | |
Collapse
|
5
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
6
|
Miller CM, Donner AJ, Blank EE, Egger AW, Kellar BM, Østergaard ME, Seth PP, Harris EN. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res 2016; 44:2782-94. [PMID: 26908652 PMCID: PMC4824115 DOI: 10.1093/nar/gkw112] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022] Open
Abstract
Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties.
Collapse
Affiliation(s)
- Colton M Miller
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | - Aaron J Donner
- Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA 92010, USA
| | - Emma E Blank
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | - Andrew W Egger
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | - Brianna M Kellar
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| | | | - Punit P Seth
- Ionis Pharmaceuticals, 2855 Gazelle Ct, Carlsbad, CA 92010, USA
| | - Edward N Harris
- University of Nebraska-Lincoln, Dept. of Biochemistry, 1901 Vine Street Lincoln NE 68588, USA
| |
Collapse
|
7
|
Østergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP. Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides. Nucleic Acid Ther 2015. [PMID: 26222265 DOI: 10.1089/nat.2015.0547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the effect of introducing a single incorporation of 2-thio-deoxythymidine (2S-dT) or C5-Triazolylphenyl-deoxythymidine (5-TrPh-dT) at four positions within the gap region of RNase H gapmer antisense oligonucleotides (ASOs) for reducing wild-type and mutant huntingtin mRNA in human patient fibroblasts. We show that these modifications can modulate processing of the ASO/RNA heteroduplexes by recombinant human RNase H1 in a position-dependent manner. We also created a structural model of the catalytic domain of human RNase H bound to ASO/RNA heteroduplexes to rationalize the activity and selectivity observations in cells and in the biochemical assays. Our results highlight the ability of chemical modifications in the gap region to produce profound changes in ASO behavior.
Collapse
Affiliation(s)
| | - Pawan Kumar
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | | - Andrew Watt
- 1 Isis Pharmaceuticals , Carlsbad, California
| | - Pawan K Sharma
- 3 Department of Chemistry, Kurukshetra University , Kurukshetra, India
| | - Poul Nielsen
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | |
Collapse
|
8
|
Istrate A, Medvecky M, Leumann CJ. 2'-Fluorination of tricyclo-DNA controls furanose conformation and increases RNA affinity. Org Lett 2015; 17:1950-3. [PMID: 25837683 DOI: 10.1021/acs.orglett.5b00662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesis of 2'-fluoro tricyclo-DNA pyrimidine nucleosides with fluorine in the ribo-configuration and their incorporation into oligodeoxynucleotides was accomplished. Unlike the parent tc-T nucleoside, the 2'F-RNA-tc-T unit occurs in the 2'-exo conformation in the crystal. Specifically, F-RNA-tc-T was found to stabilize duplexes with RNA by +2 to +4 °C in Tm/mod. F-RNA-tc-nucleosides mix well with the DNA backbone and thus open up possibilities of using shorter and mixed-(DNA/tc-DNA) backbone oligonucleotides for therapeutic applications.
Collapse
Affiliation(s)
- Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Michal Medvecky
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|