1
|
Sanz-Martín G, Migliore DP, Gómez del Campo P, del Castillo-Izquierdo J, Domínguez JM. GFPrint™: A machine learning tool for transforming genetic data into clinical insights. PLoS One 2024; 19:e0311370. [PMID: 39602407 PMCID: PMC11602062 DOI: 10.1371/journal.pone.0311370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/15/2024] [Indexed: 11/29/2024] Open
Abstract
The increasing availability of massive genetic sequencing data in the clinical setting has triggered the need for appropriate tools to help fully exploit the wealth of information these data possess. GFPrint™ is a proprietary streaming algorithm designed to meet that need. By extracting the most relevant functional features, GFPrint™ transforms high-dimensional, noisy genetic sequencing data into an embedded representation, allowing unsupervised models to create data clusters that can be re-mapped to the original clinical information. Ultimately, this allows the identification of genes and pathways relevant to disease onset and progression. GFPrint™ has been tested and validated using two cancer genomic datasets publicly available. Analysis of the TCGA dataset has identified panels of genes whose mutations appear to negatively influence survival in non-metastatic colorectal cancer (15 genes), epidermoid non-small cell lung cancer (167 genes) and pheochromocytoma (313 genes) patients. Likewise, analysis of the Broad Institute dataset has identified 75 genes involved in pathways related to extracellular matrix reorganization whose mutations appear to dictate a worse prognosis for breast cancer patients. GFPrint™ is accessible through a secure web portal and can be used in any therapeutic area where the genetic profile of patients influences disease evolution.
Collapse
|
2
|
Li L, Shan T, Zhang D, Ma F. Nowcasting and forecasting global aging and cancer burden: analysis of data from the GLOBOCAN and Global Burden of Disease Study. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:223-232. [PMID: 39281725 PMCID: PMC11401500 DOI: 10.1016/j.jncc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 09/18/2024] Open
Abstract
Objective To analyze the impact of global population aging on cancer epidemiology, with a focus on the incidence and mortality rates among individuals aged 60 years and above. Methods We utilized open-source data, retrieving population age estimates from the United Nations Population Division website. The GLOBOCAN 2020 database provided estimates for cancer cases and deaths in 2020 and 2040, while the Global Burden of Disease 2019 database supplied estimates of new cancer cases worldwide from 2000 to 2019. Inclusion criteria considered individuals aged 60 years and over, focusing on the top five deadliest cancers. The cohort-component method was employed for population prediction, with age-specific incidence and mortality rates estimated for 2020 used to forecast the cancer burden. Results In 2021, the global population aged over 60 years accounted for 13.7%, with Europe/North America and Australia/New Zealand having the highest proportions. The older population is predicted to reach 19.2% by 2040. In 2020, of the 19.3 million new cancer cases worldwide, 64% occurred in individuals aged 60 and above, contributing to 71.3% of cancer-related deaths. The five most common cancer sites were the lung, colorectum, prostate, breast, and stomach. Cancer incidence and deaths are projected to rise significantly among older individuals, reaching 20.7 million new cases and 12.7 million deaths by 2040. Older age, tobacco use, dietary factors, alcohol consumption, and high body mass index (BMI) were identified as major risk factors for various cancers in this demographic. Conclusions This study reveals a significant rise in cancer incidence and mortality among the elderly due to global population aging. The urgency for targeted interventions in cancer prevention, screening, and treatment for older individuals is emphasized. Despite acknowledged limitations, these findings contribute valuable insights to inform strategies for managing cancer in the elderly amidst evolving demographic trends.
Collapse
Affiliation(s)
- Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianhao Shan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
4
|
Russo M, Moccia S, Luongo D, Russo GL. Senolytic Flavonoids Enhance Type-I and Type-II Cell Death in Human Radioresistant Colon Cancer Cells through AMPK/MAPK Pathway. Cancers (Basel) 2023; 15:cancers15092660. [PMID: 37174126 PMCID: PMC10177236 DOI: 10.3390/cancers15092660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Resistance to cancer therapies remains a clinical challenge and an unsolved problem. In a previous study, we characterized a new colon cancer cell line, namely HT500, derived from human HT29 cells and resistant to clinically relevant levels of ionizing radiation (IR). Here, we explored the effects of two natural flavonoids, quercetin (Q) and fisetin (F), well-known senolytic agents that inhibit genotoxic stress by selectively removing senescent cells. We hypothesized that the biochemical mechanisms responsible for the radiosensitising effects of these natural senolytics could intercept multiple biochemical pathways of signal transduction correlated to cell death resistance. Radioresistant HT500 cells modulate autophagic flux differently than HT29 cells and secrete pro-inflammatory cytokines (IL-8), commonly associated with senescence-related secretory phenotypes (SASP). Q and F inhibit PI3K/AKT and ERK pathways, which promote p16INK4 stability and resistance to apoptosis, but they also activate AMPK and ULK kinases in response to autophagic stress at an early stage. In summary, the combination of natural senolytics and IR activates two forms of cell death: apoptosis correlated to the inhibition of ERKs and lethal autophagy dependent on AMPK kinase. Our study confirms that senescence and autophagy partially overlap, share common modulatory pathways, and reveal how senolytic flavonoids can play an important role in these processes.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Stefania Moccia
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Diomira Luongo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
5
|
Ivanova M, Bottiglieri L, Sajjadi E, Venetis K, Fusco N. Malignancies in Patients with Celiac Disease: Diagnostic Challenges and Molecular Advances. Genes (Basel) 2023; 14:376. [PMID: 36833303 PMCID: PMC9956047 DOI: 10.3390/genes14020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease group characterized by duodenal inflammation in genetically predisposed individuals, precipitated by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this condition has led to the discovery of numerous genes involved in interleukin signaling and immune-related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal tract, and a significant number of studies have considered the possible association between CD and neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal cancers. This can be partially explained by common cancer hallmarks present in these patients. The study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible missing links between CD and cancer incidence in these patients. However, the literature is extremely mixed and, therefore, our understanding of the biological interplay between CD and cancer remains limited, with significant implications in terms of clinical management and screening protocols. In this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur in these patients.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
6
|
Steger E, Mattson B, Montano M. Notes on Surviving Head and Neck Cancer: Paving the Road Ahead. Adv Biol (Weinh) 2022; 6:e2200306. [PMID: 36522134 DOI: 10.1002/adbi.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|