1
|
Liang X, Li P, Wu Q. A novel AP/PA total body irradiation technique using abutting IMRT fields at extended SSD. J Appl Clin Med Phys 2024; 25:e14213. [PMID: 38425126 PMCID: PMC11005982 DOI: 10.1002/acm2.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 03/02/2024] Open
Abstract
PURPOSE To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.
Collapse
Affiliation(s)
- Xiaomin Liang
- Medical Physics Graduate ProgramDuke Kunshan UniversityKunshanJiangsuChina
| | - Peixiong Li
- Medical Physics Graduate ProgramDuke Kunshan UniversityKunshanJiangsuChina
| | - Qiuwen Wu
- Department of Radiation OncologyDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
2
|
Parsons D, Lim TY, Teruel JR, Galavis P, Agostinelli S, Liang J, Mancosu P, Cherpak A, Stanley DN, Ahn KH, Guo B, Gonzalez Y, Burmeister J, Wong JY, Gu X, Kim GGY. Considerations for intensity modulated total body or total marrow and lymphoid irradiation. Clin Transl Radiat Oncol 2023; 43:100674. [PMID: 37753462 PMCID: PMC10518336 DOI: 10.1016/j.ctro.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
We compiled a sampling of the treatment techniques of intensity-modulated total body irradiation, total marrow irradiation and total marrow and lymphoid irradiation utilized by several centers across North America and Europe. This manuscript does not serve as a consensus guideline, but rather is meant to serve as a convenient reference for centers that are considering starting an intensity-modulated program.
Collapse
Affiliation(s)
- David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tze Yee Lim
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose R. Teruel
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
| | - Paulina Galavis
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
| | | | - Jieming Liang
- Department of Radiation Oncology, City of Hope National Medical Center City of Hope National Medical Center, Duarte, CA, USA
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Medical Physics Unit, Rozzano, Milan, Italy
| | - Amanda Cherpak
- Department of Radiation Oncology and Department of Medical Physics, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Dennis N. Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kang-Hyun Ahn
- Department of Radiation Oncology, University of Illinois, Chicago, IL and Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Bingqi Guo
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yesenia Gonzalez
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Center, Detroit, MI, USA
| | - Jeffrey Y.C. Wong
- Department of Radiation Oncology, City of Hope National Medical Center City of Hope National Medical Center, Duarte, CA, USA
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Grace Gwe-Ya Kim
- Radiation Medicine and Applied Science, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Manabe Y, Shibamoto Y, Murai T, Torii A, Niwa M, Kondo T, Okazaki D, Sugie C. Intensity-modulated radiation therapy for multiple targets with tomotherapy using multiple sets of static ports from different angles. J Appl Clin Med Phys 2020; 21:132-138. [PMID: 32250015 PMCID: PMC7324698 DOI: 10.1002/acm2.12874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To treat multiple targets separated in the craniocaudal direction within a short time, we invented a new technique using multiple static-port tomotherapy with the dynamic-jaw mode and named it the pseudo-DJDC (pDJDC) technique. We compared the pDJDC plans and helical tomotherapy plans using the dynamic-jaw mode (HDJ) for multiple targets. In the pDJDC plans, we used a beam set with 2-7 ports to the targets at the same level in the craniocaudal direction, and employed another beam set for other targets using different port angles (9-12 angles in total). METHODS In seven patients, two plans using the pDJDC and HDJ techniques were compared. For multiple targets (n = 2-6), 20-60 Gy in 2- to 7.5-Gy fractions were prescribed for the planning target volumes at D50%. The conformity index, uniformity index (D5%/D95%), dose distribution in the lung, and treatment time were evaluated. RESULTS The median conformity index of all seven patients was 3.0 for the pDJDC plans and 2.4 for the HDJ plans (P = 0.031). The median uniformity indices of the planning target volume (n = 25) for the two plans were 1.048 and 1.057, respectively (P = 0.10). For five patients with thoracic targets, the median mean lung doses were 2.6 Gy and 2.4 Gy, respectively (P = 0.63). The median V5Gy and V20Gy of the lungs in the five patients were 11.8% and 8.5% (P = 0.63), and 1.6% and 2.1% (P = 0.31), respectively. The pDJDC plans reduced the treatment time by 48% compared to the HDJ plans (median: 462 and 884 sec, respectively, P = 0.031). CONCLUSION The pDJDC technique allows treatment of multiple targets in almost half the time of the HDJ technique. The pDJDC plans were comparable to the HDJ plans in dose distribution, although the conformity index deteriorated.
Collapse
Affiliation(s)
- Yoshihiko Manabe
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanari Niwa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuhito Kondo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Dai Okazaki
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chikao Sugie
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Hong CS, Kim MJ, Kim J, Chang KH, Park K, Kim DW, Han MC, Yoon HI, Kim JS, Lee H. Feasibility of hybrid TomoHelical- and TomoDirect-based volumetric gradient matching technique for total body irradiation. Radiat Oncol 2019; 14:233. [PMID: 31856870 PMCID: PMC6924057 DOI: 10.1186/s13014-019-1435-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tomotherapy-based total body irradiation (TBI) is performed using the head-first position (HFP) and feet-first position (FFP) due to treatment length exceeding the 135 cm limit. To reduce the dosimetric variation at the match lines, we propose and verify a volumetric gradient matching technique (VGMT) by combining TomoHelical (TH) and TomoDirect (TD) modes. METHODS Two planning CT image sets were acquired with HFP and FFP using 15 × 55 × 18 cm3 of solid water phantom. Planning target volume (PTV) was divided into upper, lower, and gradient volumes. The junction comprised 2-cm thick five and seven gradient volumes (5-GVs and 7-GVs) to create a dose distribution with a gentle slope. TH-IMRT and TD-IMRT plans were generated with 5-GVs and 7-GVs. The setup error in the calculated dose was assessed by shifting dose distribution of the FFP plan by 5, 10, 15, and 20 mm in the longitudinal direction and comparing it with the original. Doses for 95% (D95) and 5% of the PTV (D5) were calculated for all simulated setup error plans. Absolute dose measurements were performed using an ionization chamber in the junction. RESULTS The TH&TD plan produced a linear gradient in junction volume, comparable to that of the TH&TH plan. D5 of the PTV was 110% of the prescribed dose when the FFP plan was shifted 0.7 cm and 1.2 cm in the superior direction for 5-GVs and 7-GVs. D95 of the PTV decreased to < 90% of the prescribed dose when the FF plan was shifted 1.1 cm and 1.3 cm in the inferior direction for 5-GVs and 7-GVs. The absolute measured dose showed a good correlation with the calculated dose in the gradient junction volume. The average percent difference (±SD) in all measured points was - 0.7 ± 1.6%, and the average dose variations between depths was - 0.18 ± 1.07%. CONCLUSION VGMT can create a linear dose gradient across the junction area in both TH&TH and TH&TD and can minimize the dose sensitivity to longitudinal setup errors in tomotherapy-based TBI.
Collapse
Affiliation(s)
- Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Min-Joo Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Kyung Hwan Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Kwangwoo Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
| | - Ho Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
| |
Collapse
|