1
|
Raranje C, Mazur TR, Mo A, Laugeman E. Single-Isocenter, Multiple-Target Abdominal Cone-Beam Computed Tomography (CBCT)-Guided Online Adaptive Stereotactic Body Radiotherapy (SBRT). Cureus 2024; 16:e68904. [PMID: 39381481 PMCID: PMC11458792 DOI: 10.7759/cureus.68904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Stereotactic body radiotherapy (SBRT) is increasingly being prescribed for treating patients with multiple metastases, especially in the setting of oligometastatic disease. Treating multiple targets presents unique challenges in radiotherapy planning and delivery, including practical considerations relating to treatment time, resource allocation, and treatment planning complexity. Treating targets in a common isocenter reduces the time required for treatment and simplifies planning, but historically, it has often not been feasible due to inter- and intra-fractional variation in relative target positions. With online adaptation, individual targets can be re-contoured on each treatment fraction to obviate inter-fractional variation, and with appropriate margin selection intra-fractional motion can be managed. In this case report, we describe single-isocenter, multiple-target treatment via online adaptation of a 93-year-old man with a history of metastatic hepatocellular carcinoma. He initially presented with a 9.1 cm liver mass, suspicious lung lesions, and an enlarged porta hepatis lymph node, which were biopsy proven to be hepatocellular carcinoma. Following 18 months of systemic immunotherapy, he demonstrated a favorable response, including a reduction in primary liver mass to 5.1 cm and resolution of pulmonary lesions; however, recent serial imaging demonstrated oligoprogression of two peripancreatic lymph node conglomerates that were biopsy proven to be poorly differentiated carcinoma. The patient was offered adaptive SBRT to a dose of 35-40 Gy in five fractions as a consolidative approach for treating both the primary liver mass and oligoprogressive lymph nodes. He tolerated treatment without any grade 2 or higher acute toxicity and had stable disease on three-month post-treatment imaging. By leveraging online adaptation, especially for the daily re-definition of target volumes, we were able to treat three targets in the abdomen accurately in a common isocenter. Treating in this manner vastly shortened and simplified the patient's radiation course. Quantitative evaluation of re-contoured targets and post-treatment imaging highlighted the value of online adaption with careful margin specification and alignment instructions.
Collapse
Affiliation(s)
- Chipo Raranje
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Thomas R Mazur
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Allen Mo
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Eric Laugeman
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Zhang S, Guo C, Xu J, Qian P, Guo J, Liu T, Wu Y, Hong J, Wang Q, He X, Sun L. Quantitative assessment of intertarget position variations based on 4D-CT and 4D-CBCT simulations in single-isocenter multitarget lung stereotactic body radiation therapy. J Cancer Res Clin Oncol 2024; 150:359. [PMID: 39044013 PMCID: PMC11266286 DOI: 10.1007/s00432-024-05836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND In single-isocenter multitarget stereotactic body radiotherapy (SBRT), geometric miss risks arise from uncertainties in intertarget position. However, its assessment is inadequate, and may be interfered by the reconstructed tumor position errors (RPEs) during simulated CT and cone beam CT (CBCT) acquisition. This study aimed to quantify intertarget position variations and assess factors influencing it. METHODS We analyzed data from 14 patients with 100 tumor pairs treated with single-isocenter SBRT. Intertarget position variation was measured using 4D-CT simulation to assess the intertarget position variations (ΔD) during routine treatment process. Additionally, a homologous 4D-CBCT simulation provided RPE-free comparison to determine the impact of RPEs, and isolating purely tumor motion induced ΔD to evaluate potential contributing factors. RESULTS The median ΔD was 4.3 mm (4D-CT) and 3.4 mm (4D-CBCT). Variations exceeding 5 mm and 10 mm were observed in 31.1% and 5.5% (4D-CT) and 20.4% and 3.4% (4D-CBCT) of fractions, respectively. RPEs necessitated an additional 1-2 mm safety margin. Intertarget distance and breathing amplitude variability showed weak correlations with variation (Rs = 0.33 and 0.31). The ΔD differed significantly by locations (upper vs. lower lobe and right vs. Left lung). Notably, left lung tumor pairs exhibited the highest risk. CONCLUSIONS This study provide a reliable way to assess intertarget position variation by using both 4D-CT and 4D-CBCT simulation. Consequently, single-isocenter SBRT for multiple lung tumors carries high risk of geometric miss. Tumor motion and RPE constitute a substantial portion of intertarget position variation, requiring correspondent strategies to minimize the intertarget uncertainties.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Chang Guo
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jun Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Pudong Qian
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jiali Guo
- Department of Radiation Oncology, Dantu People's Hospital, Anhui, Maanshan, 243100, China
| | - Tingting Liu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yifan Wu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jun Hong
- Department of Radiation Oncology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Qi Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Xia He
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Li Sun
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Li C, Luo H, Song W, Hu Y, Li J, Cai Z. Dosimetric comparison of four radiotherapy techniques for stage III non‑small cell lung cancer. Oncol Lett 2023; 26:347. [PMID: 37427336 PMCID: PMC10326827 DOI: 10.3892/ol.2023.13933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
The present study was implemented to compare the dosimetric parameters of the target dose coverage and critical structures in the treatment planning of four radiotherapy techniques [namely, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), hybrid IMRT (h-IMRT) and volumetric-modulated arc therapy (VMAT)] for stage III non-small cell lung cancer (NSCLC) qualified plans for medical physicists, therapists and physicians. A total of 40 patients confirmed to have stage IIIA or IIIB NSCLC were enrolled, and four plans were designed for each patient. The prescription dose to the planning target volume (PTV) was assigned as 60 Gy in 30 fractions. The conformity index (CI), heterogeneity index (HI) and parameters of organs at risk (OARs) were calculated. For the PTV, the CI for VMAT was found to be the highest of all the four techniques (P<0.05), whereas the HI for the h-IMRT technique was found to be the lowest (P<0.05). Concerning the OARs, for the percentage of lung volume receiving a dose >5 Gy (lung V5), the highest value was obtained with VMAT (P<0.05), whereas for lung V30 and heart V30, the VMAT and IMRT techniques were found to be better compared with 3D-CRT and h-IMRT (P<0.05). For esophagus V50, the maximal dose (Dmax) and mean dose for the IMRT technique displayed the best results (P<0.05), and in the case of the spinal cord, the Dmax with VMAT showed a significant advantage over the other techniques (P<0.05). The treatment monitor units (MUs) in IMRT were found to be the largest (P<0.05), whereas the treatment time with VMAT was the shortest (P<0.05). For smaller PTVs, VMAT was the technique that provided the optimal dose distribution and sparing of the heart. Compared with 3D-CRT alone, adding 20% IMRT to the 3D-CRT base plan was shown to improve the plan quality, and IMRT and VMAT, as techniques, had better dose coverage and sparing of OARs. Furthermore, for patients in whom the lung V5 could be kept low enough, VMAT potentially offered a good alternative to the technique to IMRT, thereby offering additional possibilities for sparing of other OARs, and decreasing the MUs and treatment time.
Collapse
Affiliation(s)
- Chao Li
- Department of Radiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Haifeng Luo
- Department of Radiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Wenli Song
- Department of Radiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yan Hu
- Department of Radiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jingjing Li
- Department of Radiotherapy, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zhiqiang Cai
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
4
|
Dosimetrical assessment of jaw tracking technique in volumetric modulated arc therapy for a sample of patients with lateralised targets. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Introduction:
In modulated radiotherapy treatments with the jaw tracking technique (JTT), the collimator jaws can dynamically follow the multileaf collimator apertures and reduce radiation leakage. This reduction protects normal tissue from unwanted doses. Previous research has highlighted the importance of defining which patients will benefit most from JTT. Besides, some authors have expressed their concerns about possible increases in monitor units (MUs). Treatments of patients with peripheral targets and isocentre located in the patient’s midline are of particular interest. The current work assessed the effect of JTT on these cases.
Methods:
JTT plans for thirty-two patients were compared to plans with the static jaws technique. The volumes of normal tissue receiving 5 Gy (V5), 10 Gy (V10) and 20 Gy (V20), mean dose (Dmean), target coverage parameters D95, D2% and Paddick’s conformity index (PCI) were compared. MUs were also registered for comparisons. The decrease in the jaws opening with JTT was correlated to the decrease in dose values in normal tissue.
Results:
Small decreases were observed in D95 and in D2% values, without statistical significance. A 5% average decrease in PCI values was noticed as well as significant decreases in V5, V10 and Dmean values, 9% on average. A 3% decrease in V20 was also observed. The number of MUs decreased by 2%. A significant correlation was found between the reduction of the secondary collimation opening areas and the dose delivered to normal tissue.
Conclusions:
JTT technique improved normal tissue protection in volumetric modulated arc therapy treatments for the patients included in the present study.
Collapse
|
5
|
Huang YY, Yang J, Liu YB. Planning issues on linac-based stereotactic radiotherapy. World J Clin Cases 2022; 10:12822-12836. [PMID: 36568990 PMCID: PMC9782937 DOI: 10.12998/wjcc.v10.i35.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
This work aims to summarize and evaluate the current planning progress based on the linear accelerator in stereotactic radiotherapy (SRT). The specific techniques include 3-dimensional conformal radiotherapy, dynamic conformal arc therapy, intensity-modulated radiotherapy, and volumetric-modulated arc therapy (VMAT). They are all designed to deliver higher doses to the target volume while reducing damage to normal tissues; among them, VMAT shows better prospects for application. This paper reviews and summarizes several issues on the planning of SRT to provide a reference for clinical application.
Collapse
Affiliation(s)
- Yang-Yang Huang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi Province, China
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Jun Yang
- Department of Radiotherapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Bao Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi Province, China
| |
Collapse
|
6
|
Sun W, Shi Y, Li Y, Ge C, Yang X, Xia W, Chen K, Wang L, Dong L, Wang H. Selection Strategy of Jaw Tracking in VMAT Planning for Lung SBRT. Front Oncol 2022; 12:820632. [PMID: 35211411 PMCID: PMC8860988 DOI: 10.3389/fonc.2022.820632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose This study aimed to investigate the dosimetric effect and delivery reliability of jaw tracking (JT) with increasing planning target volume (PTV) for lung stereotactic body radiation therapy (SBRT) plans. A threshold of PTV was proposed as a selection criterion between JT and fixed-jaw (FJ) techniques. Methods A total of 28 patients with early-stage non-small-cell lung cancer were retrospectively included. The PTVs ranged from 4.88 cc to 68.74 cc, prescribed with 48 Gy in four fractions. Three-partial-arc volumetric modulated arc therapy (VMAT) plans with FJ and with JT were created for each patient with the same optimization objectives. These two sets of plans were compared using metrics, including conformity index (CI), V50%, R50%, D2cm, dose–volume parameters of organs at risk, and monitor units (MUs). The ratio of small subfields (<3 cm in either dimension), %SS, was acquired as a surrogate for the small-field uncertainty. Statistical analyses were performed to evaluate the correlation between the differences in these parameters and the PTV. Results The V50%, R50%, D2cm, and V20Gy, D1,500cc, and D1,000cc of the lung showed a statistically significant improvement in JT plans as opposed to FJ plans, while the number of MU in JT plans was higher by an average of 1.9%. Between FJ and JT plans, the PTV was strongly correlated with the differences in V50%, moderately correlated with those in V20Gy of the lung, and weakly correlated with those in D2cm and D1,500cc of the lung. By using JT, %SS was found to be negatively correlated with the PTV, and the PTV should be at least approximately 12.5 cc for an expected %SS <50%, which was 15 cc for a %SS <20% and 20 cc for a %SS <5%. Conclusions Considering the dosimetric differences and small-field uncertainties, JT could be selected using a PTV threshold, such as 12.5, 15, or 20 cc, on the basis of the demand of delivery reliability for lung SBRT.
Collapse
Affiliation(s)
- Wuji Sun
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Shi
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yu Li
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Chao Ge
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Xu Yang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Wenming Xia
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Kunzhi Chen
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Libo Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Huidong Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
van Timmeren JE, Ehrbar S, Chamberlain M, Mayinger M, Hoogeman MS, Andratschke N, Guckenberger M, Tanadini-Lang S. Single-isocenter versus multiple-isocenters for multiple lung metastases: Evaluation of lung dose. Radiother Oncol 2021; 166:189-194. [PMID: 34864135 DOI: 10.1016/j.radonc.2021.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE A potential challenge in single-isocenter multi-lesion lung stereotactic body radiotherapy (SBRT) is that patient positioning is not based on each lesion individually, but on the average position of all lesions. This may lead to larger margins compared to treating with one isocenter per lesion, but increases workflow efficiency. The aim of this study was to investigate whether a single-isocenter technique leads to increased normal lung dose compared to a conventional multiple-isocenters technique. MATERIALS AND METHODS A cohort of 15 NSCLC patients with two or three lesions previously treated with SBRT was subjected to treatment planning with a multiple-isocenter technique and a single-isocenter technique. For the latter, two margin approaches were evaluated: (1) identical margins for each internal target volume (ITV), assuming an average registration for all lesions in cone-beam CT (CBCT) positioning verification and (2) a smaller margin for the largest lesion, assuming an optimal registration for that lesion. For all 45 treatment plans, mean lung dose (MLD) and lungs-V20Gy were evaluated. The study was performed following RATING guidelines. RESULTS The MLD was 4.9 ± 1.9 Gy (mean ± SD) for multiple-isocenters and 5.4 ± 2.1 Gy and 5.3 ± 2.2 Gy for single-isocenter approach 1 and 2, respectively. V20Gy was 5.5 ± 3.7%, 5.5 ± 3.2% and 5.4 ± 3.3%. A median [range] increase in MLD of 11.6% [-14.9 - 26.8] was observed when comparing single-isocenter treatment plans to those with multiple isocenters. V20Gy increased by 0.2 [-3.4 - 1.3] percentage points. CONCLUSION A single-isocenter SBRT technique for lung patients with multiple targets results in clinically acceptable increases in normal lung dose.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland.
| | - Stefanie Ehrbar
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland
| | - Madalyne Chamberlain
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Switzerland
| |
Collapse
|
8
|
Modified VMAT Plans for Locally Advanced Centrally Located Non-Small Cell Lung Cancer (NSCLC). Life (Basel) 2021; 11:life11101085. [PMID: 34685456 PMCID: PMC8538695 DOI: 10.3390/life11101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives: This study aimed to find the optimal radiotherapy VMAT plans, that achieved high conformity and homogeneity to the planned target volume (PTV), and minimize the dose to nearby organs at risk including the non-PTV lung, heart and oesophagus for patients with centrally located non-small Cell Lung Cancer. Methods: A total of 18 patients who were treated for stage III centrally located non-small Cell Lung Cancer were selected retrospectively for this study. Identical CT datasets, 4D CT and structure dataset were used for radiotherapy planning based on single-planar VMAT (SP-VMAT), dual-planar VMAT (DP-VMAT) and Hybrid VMAT (H-VMAT). For SP-VMAT, one full arc and two half arcs were created on single-plane with couch at 0°. For DP-VMAT, one full arc was created with couch at 0°, and two half arcs with couch rotation of 330° or 30°. For H-VMAT, anterior-posterior opposing fixed beam and two half arcs were planned at couch at 0°. Dose constraints were adhered to the RTOG0617. Dose volumetric parameters were collected for statistical analysis. Results: There were no significant differences for the PTV, HI, CI between the SP-VMAT, DP-VMAT and H-VMAT. For the non-PTV lungs, Dmean, V20, V10, V5, D1500 and D1000 were significantly lower (2.05 Gy, 6.47%, 15.89%, 11.66% 4.17 Gy and 5.47 Gy respectively) in H-VMAT than that of SP-VMAT (all p < 0.001). For the oesophagus, Dmax, Dmean, V30 and V18.8 of H-VMAT were 0.08 Gy, 1.73 Gy, 5.54% and 7.17% lower than that of the SP-VMAT plan. For the heart, Dmean, V34, V28, V20 and V10 of DP-VMAT were lower than that of SP-VMAT by 1.45 Gy, 0.65%, 1.74%, 4.8% and 7.11% respectively. Conclusion: The proposed H-VMAT showed more favourable plan quality than the SP-VMAT for centrally located stage III NSCLC, in particular for non-PTV lungs and the oesophagus. It will benefit patients, especially those who planned for immunotherapy (Durvalumab) after standard chemo-irradiation. The proposed DP-VMAT plan showed significant dose reduction to the heart when compared to the H-VMAT plan.
Collapse
|
9
|
Peng Q, Shi J, Zhang J, Li Q, Li Z, Zhang Q, Peng Y, Chen L. Comparison of combinations of irradiation techniques and jaw conditions in intensity-modulated radiotherapy for lung cancer. J Appl Clin Med Phys 2021; 22:178-189. [PMID: 34505397 PMCID: PMC8504584 DOI: 10.1002/acm2.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To assist in the selection of a suitable combination of an irradiation technique and jaw condition in intensity‐modulated radiotherapy (IMRT) and volumetric‐modulated arc radiotherapy (VMAT) for lung cancer treatment plans. Materials and methods Thirty patients with lung cancer who underwent radiotherapy were enrolled retrospectively. They were categorized as having central lung cancer, peripheral lung cancer with mediastinal lymph node metastasis (peripheral E lung cancer), and peripheral lung cancer without mediastinal lymph node metastasis (peripheral N lung cancer). Four treatment plans were designed for each patient: fixed jaw and adaptive jaw IMRT technique (FJ‐IMRT and JA‐IMRT), and fixed jaw and jaw tracking VMAT technique (FJ‐VMAT and JT‐VMAT). The dose parameters of the four group plans were compared and analyzed. Results Compared to FJ‐IMRT, JA‐IMRT significantly reduced the mean dose (Dmean) and volume percentage of 5 Gy (V5Gy) of the total lung in central and peripheral N lung cancer. Similarly, compared to FJ‐VMAT, JT‐VMAT provided better protection to most organs at risk (OARs), particularly for total lung and heart. In comparison with IMRT, VMAT significantly improved the conformity index (CI) of the planning target volume for the three lung cancer classifications, and it reduced the dose of almost all OARs except V5Gy and Dmean of the total lung. Moreover, the mean monitor units of the VMAT groups were far lower than the IMRT groups. Conclusion Based on the dosimetric findings and considering clinical data published on lung and heart side effects, we propose recommendations on the preferred treatment technique based on tumor location and pulmonary function. For central lung cancer with normal pulmonary function, we advise JT‐VMAT techniques. Conversely, for central lung cancer with poor pulmonary function, we recommend JA‐IMRT techniques. We advocate JA‐IMRT for peripheral E lung cancer. For peripheral N lung cancer, JT‐VMAT techniques are strongly recommended.
Collapse
Affiliation(s)
- Qinghe Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junyue Shi
- Department of Radiation Oncology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jun Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiwen Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhenghuan Li
- Department of Radiation Oncology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingyuan Zhang
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China
| | - Yinglin Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
10
|
Chen H, Huang Y, Wang H, Shao Y, Yue NJ, Gu H, Duan Y, Feng A, Xu Z. Dosimetric comparison and biological evaluation of fixed-jaw intensity-modulated radiation therapy for T-shaped esophageal cancer. Radiat Oncol 2021; 16:158. [PMID: 34412656 PMCID: PMC8375041 DOI: 10.1186/s13014-021-01882-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background To evaluate the dosimetric and biological benefits of the fixed-jaw (FJ) intensity-modulated radiation therapy (IMRT) technique for patients with T-shaped esophageal cancer. Methods FJ IMRT plans were generated for thirty-five patients and compared with jaw tracking (JT) IMRT, static jaw (SJ) IMRT and JT volumetric modulated arc therapy (VMAT). Dosimetric parameters, tumor control probability (TCP) and normal tissue complication probability (NTCP), monitor units (MUs), delivery time and gamma passing rate, as a measure of dosimetric verification, were compared. The correlation between the length of PTV-C below the upper boundary of lung tissue (PTV-Cinferior) and dosimetric parameters and NTCP of the lung tissue were analyzed. Results The homogeneity and conformity of the target in the four plans were basically equivalent. When compared to the JT IMRT and SJ IMRT plans, FJ IMRT plan led to a statistically significant improvement in the NTCP and low-middle dosimetric parameters of the lung, and the improvement had a moderately positive correlation with the length of PTV-Cinferior, with a correlation coefficient ranging from 0.523 to 0.797; the FJ IMRT plan exhibited better lung sparing in low-dose volumes than the JT VMAT plan. The FJ IMRT plan had similar MUs (888 ± 99) and delivery times (516.1 ± 54.7 s) as the JT IMRT plan (937 ± 194, 522 ± 5.6 s) but higher than SJ IMRT (713 ± 137, 488.8 ± 45.2 s) and JT VMAT plan (517 ± 59, 263.7 ± 43.3 s). Conclusions The FJ IMRT technique is superior in reducing the low-dose volumes of lung tissues for patients with T-shaped esophageal cancer.
Collapse
Affiliation(s)
- Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China.
| |
Collapse
|
11
|
Pokhrel D, Stephen J, Webster A, Bernard ME. Double-vertebral segment SBRT via novel ring-mounted Halcyon Linac: Plan quality, delivery efficiency and accuracy. Med Dosim 2021; 47:20-25. [PMID: 34412963 DOI: 10.1016/j.meddos.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
To evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter/multi-target (SIMT) volumetric modulated arc therapy (VMAT) of double-vertebral segments stereotactic body radiation therapy (SBRT) on Halcyon ring delivery system (RDS). In-house multi-target end-to-end phantom testing and independent dose verification using the MD Anderson's single-isocenter/multi-target (lung/spine targets) thorax phantom were completed. Six previously treated patients with 2-vertebral segments on thoracic and/or lumber spine were replanned on Halcyon RDS with 6MV-FFF beam using a single-isocenter placed between the vertebral segments. Three full VMAT arcs with 0° and ±10° collimator angles and advanced Acuros-based dose engine for heterogeneity corrections were used. Prescription was 35 Gy in 5 fractions to each vertebral-segment, simultaneously. For comparison, Halcyon VMAT-SBRT plans were retrospectively created on SBRT-dedicated Truebeam with a 6MV-FFF beam using identical planning geometry and optimization objectives. Target coverage, conformity index (CI), heterogeneity index (HI), gradient index (GI), dose to 2-cm away from each target (D2-cm), and dose to adjacent organs-at-risk (OAR) were evaluated per NRG-BR002 protocol. Treatment delivery parameters were evaluated for both plans. In-house phantom measurements showed acceptable spatial accuracy (< 1mm within 5-cm from the isocenter) of conebeam CT-guided Halcyon SBRT treatments. The MD Anderson phantom irradiation credentialing results met IROC requirements for protocol patients. Mean isocenter-to-tumor center distance was 3.3 ± 0.6-cm (range 2.4 to 4.3-cm). Mean combined PTV was 57.3 ± 31.3 cc (range 20.1 to 99.9 cc). Both Halcyon and Truebeam SIMT-VMAT plans met NRG-BR002 compliance criteria and show similar CI, HI, GI, D2-cm. Maximal and volumetric doses to adjacent OAR including dose to partial spinal cord were lower with Halcyon RDS. Average total monitor units, modulation, and overall treatment time were lower with Halcyon plans by 130 MU, 0.2, 3.8 min, respectively, with similar beam-on time. Average pre-treatment patient-specific portal-dosimetry QA results on Halcyon showed a high pass rate of 99.6%, compared to SBRT-dedicated Truebeam pass rate of 96.8%, for 2%/2 mm clinical gamma passing criteria, suggesting more accurate treatment delivery on Halcyon RDS. SBRT treatment of double-vertebral segments via SIMT-VMAT plans on Halcyon for selected patients is feasible and dosimetrically superior to Truebeam Linac. Faster treatment delivery (<10 min) of double-vertebral segment SBRT on Halcyon could reduce patient intolerance due to severe back pain, potentially reduce intra-fraction motion errors, and improve patient throughput, and clinic workflow.
Collapse
Affiliation(s)
- Damodar Pokhrel
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA.
| | - Joseph Stephen
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| | - Aaron Webster
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| | - Mark E Bernard
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| |
Collapse
|
12
|
Pudsey LMM, Cutajar D, Wallace A, Saba A, Schmidt L, Bece A, Clark C, Yamada Y, Biasi G, Rosenfeld A, Poder J. The use of collimator angle optimization and jaw tracking for VMAT-based single-isocenter multiple-target stereotactic radiosurgery for up to six targets in the Varian Eclipse treatment planning system. J Appl Clin Med Phys 2021; 22:171-182. [PMID: 34288376 PMCID: PMC8425912 DOI: 10.1002/acm2.13360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Island blocking occurs in single-isocenter multiple-target (SIMT) stereotactic radiotherapy (SRS) whenever targets share multi-leaf collimator (MLC) leaf pairs. This study investigated the effect on plan quality and delivery, of reducing island blocking through collimator angle optimization (CAO). In addition, the effect of jaw tracking in this context was also investigated. METHODS For CAO, an algorithm was created that selects the collimator angle resulting in the lowest level of island blocking, for each beam in any given plan. Then, four volume-modulated arc therapy (VMAT) SIMT SRS plans each were generated for 10 retrospective patients: two CAO plans, with and without jaw tracking, and two plans with manually selected collimator angles, with and without jaw tracking. Plans were then assessed and compared using typical quality assurance procedures. RESULTS There were no substantial differences between plans with and without CAO. Jaw tracking produced statistically significant reduction in low-dose level parameters; healthy brain V10% and mean dose were reduced by 9.66% and 15.58%, respectively. However, quantitative values (108 cc for V10% and 0.35 Gy for mean dose) were relatively small in relation to clinical relevance. Though there were no statistically significant changes in plan deliverability, there was a notable trend of plans with jaw tracking having lower gamma analysis pass rates. CONCLUSION These findings suggest that CAO has limited benefit in VMAT SIMT SRS of 2-6 targets when using a low-dose penalty to the healthy brain during plan optimization in Eclipse. As clinical benefits of jaw tracking were found to be minimal and plan deliverability was potentially reduced, a cautious approach would be to exclude jaw tracking in SIMT SRS plans.
Collapse
Affiliation(s)
- Lauren M M Pudsey
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,St George Hospital Cancer Care Centre, Kogarah, NSW, Australia
| | - Alex Wallace
- St George Hospital Cancer Care Centre, Kogarah, NSW, Australia
| | - Anastasia Saba
- St George Hospital Cancer Care Centre, Kogarah, NSW, Australia
| | - Laurel Schmidt
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Andrej Bece
- St George Hospital Cancer Care Centre, Kogarah, NSW, Australia
| | - Catherine Clark
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giordano Biasi
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,St George Hospital Cancer Care Centre, Kogarah, NSW, Australia
| |
Collapse
|
13
|
Margin calculation for multiple lung metastases treated with single-isocenter SBRT. Radiother Oncol 2021; 162:105-111. [PMID: 34252484 DOI: 10.1016/j.radonc.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE A single-isocenter stereotactic body radiotherapy (SBRT) approach for multiple lung metastases has the potential to lower cumulative patient dose and reduce overall treatment time. However, the magnitude of inter-lesion position variation is currently unknown and not incorporated in margin calculations. The aim of this study was to quantify inter-lesion position variation and calculate safety margins for single-isocenter lung SBRT. MATERIALS AND METHODS A total of 83 pairs of pulmonary metastases from 42 NSCLC patients were used to calculate relative inter-lesion position variation by lesion-based registration of planning CT and verification CBCT. Furthermore, β-value assessment of van Herk's margin formula was performed by evaluating the distance between planned and blurred dose profiles of simulated spherical lesions, to evaluate its validity for heterogeneously planned dose distributions. Population-based ITV to PTV margins were calculated using the entire dataset and using subgroups with significant differences in relative inter-lesion position variation. RESULTS The mean ± SD inter-lesion position variation was 1.2 ± 1.1 mm as 3D-vector. Inter-lesion position variation was significantly increased if ≥1 lesion was not attached to the pleura or lesions were distant. The simulation showed that the combined SD of the random errors contributed to the margin only in the SI direction with 0.25∙σtot for a 65% dose prescription. When incorporating inter-lesion position variation, the safety margins increased from 5.6, 5.8, 5.2 mm (AP, SI, LR) to 6.0, 6.6, 5.5 mm for the entire cohort. CONCLUSION Relative inter-lesion position variation is influenced by inter-target distance and location and can be compensated with additional safety margins of <1 mm using single-isocenter SBRT.
Collapse
|
14
|
Critchfield LS, Visak J, Bernard ME, Randall ME, McGarry RC, Pokhrel D. Automation and integration of a novel restricted single-isocenter stereotactic body radiotherapy (a-RESIST) method for synchronous two lung lesions. J Appl Clin Med Phys 2021; 22:56-65. [PMID: 34032380 PMCID: PMC8292708 DOI: 10.1002/acm2.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/12/2022] Open
Abstract
Synchronous treatment of two lung lesions using a single-isocenter volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) plan can decrease treatment time and reduce the impact of intrafraction motion. However, alignment of both lesions on a single cone beam CT (CBCT) can prove difficult and may lead to setup errors and unacceptable target coverage loss. A Restricted Single-Isocenter Stereotactic Body Radiotherapy (RESIST) method was created to minimize setup uncertainties and provide treatment delivery flexibility. RESIST utilizes a single-isocenter placed at patient's midline and allows both lesions to be planned separately but treated in the same session. Herein is described a process of automation of this novel RESIST method. Automation of RESIST significantly reduced treatment planning time while maintaining the benefits of RESIST. To demonstrate feasibility, ten patients with two lung lesions previously treated with a single-isocenter clinical VMAT plan were replanned manually with RESIST (m-RESIST) and with automated RESIST (a-RESIST). a-RESIST method automatically sets isocenter, creates beam geometry, chooses appropriate dose calculation algorithms, and performs VMAT optimization using an in-house trained knowledge-based planning model for lung SBRT. Both m-RESIST and a-RESIST showed lower dose to normal tissues compared to manually planned clinical VMAT although a-RESIST provided slightly inferior, but still clinically acceptable, dose conformity and gradient indices. However, a-RESIST significantly reduced the treatment planning time to less than 20 min and provided a higher dose to the lung tumors. The a-RESIST method provides guidance for inexperienced planners by standardizing beam geometry and plan optimization using DVH estimates. It produces clinically acceptable two lesions VMAT lung SBRT plans efficiently. We have further validated a-RESIST on phantom measurement and independent pretreatment dose verification of another four selected 2-lesions lung SBRT patients and implemented clinically. Further development of a-RESIST for more than two lung lesions and refining this approach for extracranial oligometastastic abdominal/pelvic SBRT, including development of automated simulated collision detection algorithm, merits future investigation.
Collapse
Affiliation(s)
- Lana Sanford Critchfield
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKY40508USA
| | - Justin Visak
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKY40508USA
| | - Mark E Bernard
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKY40508USA
| | - Marcus E Randall
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKY40508USA
| | - Ronald C McGarry
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKY40508USA
| | - Damodar Pokhrel
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKY40508USA
| |
Collapse
|
15
|
Critchfield LC, Bernard ME, Randall ME, McGarry RC, Pokhrel D. Risk of target coverage loss for stereotactic body radiotherapy treatment of synchronous lung lesions via single-isocenter volumetric modulated arc therapy. J Appl Clin Med Phys 2020; 22:251-260. [PMID: 33342042 PMCID: PMC7856510 DOI: 10.1002/acm2.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Treating multiple lung lesions synchronously via single‐isocenter volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) improves treatment efficiency and patient compliance. However, aligning multiple lung tumors accurately on single pretreatment cone beam CTs (CBCTs) can be problematic. Tumors misaligned could lead to target coverage loss. To quantify this potential target coverage loss due to small, clinically realistic setup errors, a novel simulation method was developed. This method was used on 26 previously treated patients with two metastatic lung lesions. Patients were treated with 4D CT‐based, highly conformal noncoplanar VMAT plans (clinical VMAT) with 6MV‐flattening filter free (FFF) beam using AcurosXB dose calculation algorithm with heterogeneity corrections. A single isocenter was placed approximately between the lesions to improve patient convenience and clinic workflow. Average isocenter to tumor distance was 5.9 cm. Prescription dose was 54 Gy/50 Gy in 3/5 fractions. For comparison, a plan summation (simulated VMAT) was executed utilizing randomly simulated, clinically relevant setup errors, obtained from pretreatment setup, per treatment fraction, in Eclipse treatment planning system for each of the six degrees of freedom within ± 5.0 mm and ± 2°. Simulations yielded average deviations of 27.4% (up to 72% loss) (P < 0.001) from planned target coverage when treating multiple lung lesions using a single‐isocenter plan. The largest deviations from planned coverage and desired biological effective dose (BED10, with α/β = 10 Gy) were seen for the smallest targets (<10 cc), some of which received < 100 Gy BED10. Patient misalignment resulted in substantial decrease in conformity and increase in the gradient index, violating major characteristics of SBRT. Statistically insignificant differences were seen for normal tissue dose. Although, clinical follow‐up of these patients is ongoing, the authors recommend an alternative treatment planning strategy to minimize the probability of a geometric miss when treating small lung lesions synchronously with single‐isocenter VMAT SBRT plans.
Collapse
Affiliation(s)
- Lana C Critchfield
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Milano MT, Mihai A, Kang J, Singh DP, Verma V, Qiu H, Chen Y, Kong FM(S. Stereotactic body radiotherapy in patients with multiple lung tumors: a focus on lung dosimetric constraints. Expert Rev Anticancer Ther 2019; 19:959-969. [DOI: 10.1080/14737140.2019.1686980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael T. Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alina Mihai
- Department of Radiation Oncology, Beacon Hospital, Beacon Court, Dublin, Ireland
| | - John Kang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Deepinder P Singh
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
17
|
Sanford L, Pokhrel D. Improving treatment efficiency via photon optimizer (PO) MLC algorithm for synchronous single-isocenter/multiple-lesions VMAT lung SBRT. J Appl Clin Med Phys 2019; 20:201-207. [PMID: 31538721 PMCID: PMC6806472 DOI: 10.1002/acm2.12721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Accepted: 08/25/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Elderly patients with multiple primary or oligometastases (<5 lesions) lesions with associated co-morbidities may not retain their treatment position for the traditional long SBRT treatment time with individual isocenters for each lesion. Treating multiple lesions synchronously using a single-isocenter volumetric arc therapy (VMAT) plan would be more efficient with the use of the most recently adopted photon optimizer (PO) MLC algorithm and improve the patient comfort. Herein, we quantified the clinical performance of PO versus its predecessor progressive resolution optimizer (PRO) algorithm for single-isocenter/multiple-lesions VMAT lung SBRT. MATERIALS AND METHODS Fourteen patients with metastatic non-small-cell lung cancer lesions (two to five, both uni- and bilateral lungs) received a highly conformal single-isocenter co/non-coplanar VMAT (2-6 arcs) SBRT treatment plan. Patients were treated with a 6X-FFF beam and Acuros algorithm with a single-isocenter placed between/among the lesions, using PO for MLC optimization. Average isocenter to tumor distance was 5.5 ± 1.9 cm. Mean combined PTV derived from 4D-CT scans was 38.7 ± 22.7 cc. Doses were 54 Gy/50 Gy in 3/5 fractions prescribed to 70%-80% isodose line so that at least 95% of the PTV receives 100% of prescribed dose. Plans were re-optimized using PRO algorithm. Plans were compared via ROTG-0915 protocol criteria for target conformity, heterogeneity and gradient indices, and dose to organs-at-risk (OAR). Additionally, total number of monitor units (MU), modulation factor (MF) and beam-on time were compared. RESULTS All plans met SBRT protocol requirements for target coverage and OAR doses. Comparison of target coverage and dose to the OAR showed no statistical significance between the two plans. PO had 1042 ± 753 (P < 0.001) less MU than PRO resulting in a beam-on time of about 0.75 ± 0.5 min (P < 0.001) less, on average. For similar dose distribution, a significant reduction of beam delivery complexity was observed with PO (average MF = 3.7 ± 0.7) vs PRO MLC algorithm (average MF = 4.4 ± 1.3) (P < 0.001). CONCLUSIONS PO MLC algorithm improved treatment efficiency without compromising plan quality when compared to PRO algorithm for single-isocenter/multi-lesions VMAT lung SBRT. Shorter beam-on time can potentially reduce intrafraction motion errors and improve patient compliance. PO MLC algorithm is recommended for future clinical lung SBRT plan optimization.
Collapse
Affiliation(s)
- Lana Sanford
- Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA.,Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, University of Kentucky, Lexington, KY, USA.,Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|