1
|
Nakano S, Sasaki M, Nakaguchi Y, Kamomae T, Sakuragawa K, Yamaji Y, Ikushima H. Comparative evaluation of two dose-volume histogram prediction tools for treatment planning: Treatment planning quality and dose verification accuracy. Tech Innov Patient Support Radiat Oncol 2025; 33:100297. [PMID: 39807442 PMCID: PMC11726782 DOI: 10.1016/j.tipsro.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose This study aims to compare treatment plans created using RapidPlan and PlanIQ for twelve patients with prostate cancer, focusing on dose uniformity, dose reduction to organs at risk (OARs), plan complexity, and dose verification accuracy. The goal is to identify the tool that demonstrates superior performance in achieving uniform target dose distribution and reducing OAR dose, while ensuring accurate dose verification. Methods Dose uniformity in the planning target volume, excluding the rectum, and dose reduction in the OARs (the rectum and bladder) were assessed. The validation included point-dose measurements with an ionization chamber dosimeter and gamma analysis of dose distributions. Monitor units were calculated to evaluate plan complexity. Results PlanIQ provided superior dose uniformity, with improvements in the dose homogeneity index compared with RapidPlan. RapidPlan was more effective in reducing OAR doses, particularly in the rectum, with significant reductions at various dose levels. Dose verification showed no significant differences between the two tools. However, PlanIQ showed a smaller mean difference between the calculated and measured doses and a slightly better dose distribution match with less variability than RapidPlan. Conclusions RapidPlan was more effective at reducing OAR doses, whereas PlanIQ achieved better dose uniformity and lower plan complexity. Both tools performed similarly in terms of dose verification accuracy, with PlanIQ showing a slight advantage in dose-distribution matching. The choice of planning tool depends on the primary treatment goal, whether it is to reduce the OAR doses or improve the target dose uniformity.
Collapse
Affiliation(s)
- Shoma Nakano
- School of Health Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Motoharu Sasaki
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | | | - Takeshi Kamomae
- Radioisotope Research Center, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kanako Sakuragawa
- Department of Radiological Technology, Tokushima University Hospital, Tokushima, Tokushima 770-8503, Japan
| | - Yuto Yamaji
- School of Health Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Hitoshi Ikushima
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
2
|
Hadj Henni A, Arhoun I, Boussetta A, Daou W, Marque A. Enhancing dosimetric practices through knowledge-based predictive models: a case study on VMAT prostate irradiation. Front Oncol 2024; 14:1320002. [PMID: 38304869 PMCID: PMC10832012 DOI: 10.3389/fonc.2024.1320002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction Acquisition of dosimetric knowledge by radiation therapy planners is a protracted and complex process. This study delves into the impact of empirical predictive models based on the knowledge-based planning (KBP) methodology, aimed at detecting suboptimal results and homogenizing and improving existing practices for prostate cancer. Moreover, the dosimetric effect of implementing these models into routine clinical practice was also assessed. Materials and methods Based on the KBP method, we analyzed 25 prostate treatment plans performed using VMAT by expert operators, aiming to correlate dose indicators with patient geometry. The D a v g C a v ( G y ) , V 45 G y C a v ( c c ) , and V 15 G y C a v ( c c ) of the peritoneal cavity and the V 60 G y ( % ) and V 70 G y ( % ) of the rectum and bladder were linked to geometric characteristics such as the distance from the planning target volume (PTV) to the organs at risk (OAR), the volume of the OAR, or the overlap between the PTV and the OAR. In the second phase, the KBP was used in routine clinical practice in a prospective cohort of 25 patients and compared with the 41 patient plans calculated before implementing the tool. Results Using linear regression, we identified strong geometric predictive factors for the peritoneal cavity, rectum, and bladder (R 2 > 0.8), with an average prescribed dose of 97.8%, covering 95% of the target volume. The use of the model led to a significant dose reduction ( Δ ) for all evaluated OARs. This trend was most notable for Δ V 15 G y C a v = - 171.5 cc ( p = 0.003 ) . Significant reductions were also obtained in average doses to the rectum and bladder, Δ D a v g R e c t = - 2.3 G y ( p = 0.040 ) , and Δ D a v g V e s s = - 3.3 G y ( p = 0.039 ) respectively. Based on this model, we reduced the number of plans with OAR constraints above the clinical recommendations from 19% to 8%. Conclusions The KBP methodology established a robust and personalized predictive model for dose estimation to organs at risk in prostate cancer. Implementing the model resulted in improved sparing of these organs. Notably, it yields a solid foundation for harmonizing dosimetric practices, alerting us to suboptimal results, and improving our knowledge.
Collapse
Affiliation(s)
- Ahmed Hadj Henni
- Radiation Oncology Department, Centre Frederic Joliot, Rouen, France
| | - Ilias Arhoun
- Radiation Oncology Department, Centre Frederic Joliot, Rouen, France
| | | | - Walid Daou
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Alexandre Marque
- Radiation Oncology Department, Centre Frederic Joliot, Rouen, France
- Oncology Department, Clinique Saint Hilaire, Rouen, France
| |
Collapse
|
3
|
Duan L, Qi W, Chen Y, Cao L, Chen J, Zhang Y, Xu C. Evaluation of complexity and deliverability of IMRT treatment plans for breast cancer. Sci Rep 2023; 13:21474. [PMID: 38052915 PMCID: PMC10698170 DOI: 10.1038/s41598-023-48331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
This study aimed to predict the outcome of patient specific quality assurance (PSQA) in IMRT for breast cancer using complexity metrics, such as MU factor, MAD, CAS, MCS. Several breast cancer plans were considered, including LBCS, RBCS, LBCM, RBCM, left breast, right breast and the whole breast for both Edge and TrueBeam LINACS. Dose verification was completed by Portal Dosimetry (PD). The receiver operating characteristic (ROC) curve was employed to determine whether the treatment plans pass or failed. The area under the curve (AUC) was used to assess the classification performance. The correlation of PSQA and complexity metrics was examined using Spearman's rank correlation coefficient (Rs). For LINACS, the most suitable complexity metric was found to be the MU factor (Edge Rs = - 0.608, p < 0.01; TrueBeam Rs = - 0.739, p < 0.01). Regarding the specific breast cancer categories, the optimal complexity metrics were as follows: MAD (AUC = 0.917) for LBCS, MCS (AUC = 0.681) for RBCS, MU factor (AUC = 0.854) for LBCM and MAD (AUC = 0.731) for RBCM. On the Edge LINAC, the preferable method for breast cancers was MCS (left breast, AUC = 0.938; right breast, AUC = 0.813), while on the TrueBeam LINAC, it became MU factor (left breast, AUC = 0.950) and MCS (right breast, AUC = 0.806), respectively. Overall, there was no universally suitable complexity metric for all types of breast cancers. The choice of complexity metric depended on different cancer types, locations and treatment LINACs. Therefore, when utilizing complexity metrics to predict PSQA outcomes in IMRT for breast cancer, it was essential to select the appropriate metric based on the specific circumstances and characteristics of the treatment.
Collapse
Affiliation(s)
- Longyan Duan
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weixiang Qi
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yibin Zhang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Cheng Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Lou Z, Cheng C, Mao R, Li D, Tian L, Li B, Lei H, Ge H. A novel automated planning approach for multi-anatomical sites cancer in Raystation treatment planning system. Phys Med 2023; 109:102586. [PMID: 37062102 DOI: 10.1016/j.ejmp.2023.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE To develop an automated planning approach in Raystation and evaluate its feasibility in multiple clinical application scenarios. METHODS An automated planning approach (Ruiplan) was developed by using the scripting platform of Raystation. Radiotherapy plans were re-generated both automatically by using Ruiplan and manually. 60 patients, including 20 patients with nasopharyngeal carcinoma (NPC), 20 patients with esophageal carcinoma (ESCA), and 20 patients with rectal cancer (RECA) were retrospectively enrolled in this study. Dosimetric and planning efficiency parameters of the automated plans (APs) and manual plans (MPs) were statistically compared. RESULTS For target coverage, APs yielded superior dose homogeneity in NPC and RECA, while maintaining similar dose conformity for all studied anatomical sites. For OARs sparing, APs led to significant improvement in most OARs sparing. The average planning time required for APs was reduced by more than 43% compared with MPs. Despite the increased monitor units (MUs) for NPC and RECA in APs, the beam-on time of APs and MPs had no statistical difference. Both the MUs and beam-on time of APs were significantly lower than that of MPs in ESCA. CONCLUSIONS This study developed a new automated planning approach, Ruiplan, it is feasible for multi-treatment techniques and multi-anatomical sites cancer treatment planning. The dose distributions of targets and OARs in the APs were similar or better than those in the MPs, and the planning time of APs showed a sharp reduction compared with the MPs. Thus, Ruiplan provides a promising approach for realizing automated treatment planning in the future.
Collapse
Affiliation(s)
- Zhaoyang Lou
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Cheng
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ronghu Mao
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dingjie Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lingling Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Bing Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongchang Lei
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
5
|
Fanou AM, Patatoukas G, Chalkia M, Kollaros N, Kougioumtzopoulou A, Kouloulias V, Platoni K. Implementation, Dosimetric Assessment, and Treatment Validation of Knowledge-Based Planning (KBP) Models in VMAT Head and Neck Radiation Oncology. Biomedicines 2023; 11:biomedicines11030762. [PMID: 36979740 PMCID: PMC10045933 DOI: 10.3390/biomedicines11030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of this study was to evaluate knowledge-based treatment planning (KBP) models in terms of their dosimetry and deliverability and to investigate their clinical benefits. Three H&N KBP models were built utilizing RapidPlan™, based on the dose prescription, which is given according to the planning target volume (PTV). The training set for each model consisted of 43 clinically acceptable volumetric modulated arc therapy (VMAT) plans. Model quality was assessed and compared to the delivered treatment plans using the homogeneity index (HI), conformity index (CI), structure dose difference (PTV, organ at risk—OAR), monitor units, MU factor, and complexity index. Model deliverability was assessed through a patient-specific quality assurance (PSQA) gamma index-based analysis. The dosimetric assessment showed better OAR sparing for the RapidPlan™ plans and for the low- and high-risk PTV, and the HI, and CI were comparable between the clinical and RapidPlan™ plans, while for the intermediate-risk PTV, CI was better for clinical plans. The 2D gamma passing rates for RapidPlan™ plans were similar or better than the clinical ones using the 3%/3 mm gamma-index criterion. Monitor units, the MU factors, and complexity indices were found to be comparable between RapidPlan™ and the clinical plans. Knowledge-based treatment plans can be safely adapted into clinical routines, providing improved plan quality in a time efficient way while minimizing user variability.
Collapse
Affiliation(s)
- Anna-Maria Fanou
- Medical Physics Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
- Correspondence: (A.-M.F.); (K.P.)
| | - Georgios Patatoukas
- Medical Physics Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
| | - Marina Chalkia
- Medical Physics Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
| | - Nikolaos Kollaros
- Medical Physics Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
| | - Andromachi Kougioumtzopoulou
- Radiation Therapy Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Therapy Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, 12462 Athens, Greece
- Correspondence: (A.-M.F.); (K.P.)
| |
Collapse
|
6
|
Scaggion A, Fusella M, Cavinato S, Dusi F, El Khouzai B, Germani A, Pivato N, Rossato MA, Roggio A, Scott A, Sepulcri M, Zandonà R, Paiusco M. Updating a clinical Knowledge-Based Planning prediction model for prostate radiotherapy. Phys Med 2023; 107:102542. [PMID: 36780793 DOI: 10.1016/j.ejmp.2023.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical knowledge-based planning (KBP) models dedicated to prostate radiotherapy treatment may require periodical updates to remain relevant and to adapt to possible changes in the clinic. This study proposes a paired comparison of two different update approaches through a longitudinal analysis. MATERIALS AND METHODS A clinically validated KBP model for moderately hypofractionated prostate therapy was periodically updated using two approaches: one was targeted at achieving the biggest library size (Mt), while the other one at achieving the highest mean sample quality (Rt). Four subsequent updates were accomplished. The goodness, robustness and quality of the outcomes were measured and compared to those of the common ancestor. Plan quality was assessed through the Plan Quality Metric (PQM) and plan complexity was monitored. RESULTS Both update procedures allowed for an increase in the OARs sparing between +3.9 % and +19.2 % compared to plans generated by a human planner. Target coverage and homogeneity slightly reduced [-0.2 %;-14.7 %] while plan complexity showed only minor changes. Increasing the sample size resulted in more reliable predictions and improved goodness-of-fit, while increasing the mean sample quality improved the outcomes but slightly reduced the models reliability. CONCLUSIONS Repeated updates of clinical KBP models can enhance their robustness, reliability and the overall quality of automatically generated plans. The periodical expansion of the model sample accompanied by the removal of the unacceptable low quality plans should maximize the benefits of the updates while limiting the associated workload.
Collapse
Affiliation(s)
- Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy.
| | - Marco Fusella
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Samuele Cavinato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy; Dipartimento di Fisica e Astronomia 'G. Galilei', Università degli Studi di Padova, Padova, Italy
| | - Francesca Dusi
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Badr El Khouzai
- Radiation Oncology Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Alessandra Germani
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Nicola Pivato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Marco Andrea Rossato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Antonella Roggio
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Anthony Scott
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Matteo Sepulcri
- Radiation Oncology Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Roberto Zandonà
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
7
|
Koike Y, Takegawa H, Anetai Y, Ohira S, Nakamura S, Tanigawa N. Patient-specific three-dimensional dose distribution prediction via deep learning for prostate cancer therapy: Improvement with the structure loss. Phys Med 2023; 107:102544. [PMID: 36774846 DOI: 10.1016/j.ejmp.2023.102544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE Deep learning (DL)-based dose distribution prediction can potentially reduce the cost of inverse planning process. We developed and introduced a structure-focused loss (Lstruct) for 3D dose prediction to improve prediction accuracy. This study investigated the influence of Lstruct on DL-based dose prediction for patients with prostate cancer. The proposed Lstruct, which is similar in concept to dose-volume histogram (DVH)-based optimization in clinical practice, has the potential to provide more interpretable and accurate DL-based optimization. METHODS This study involved 104 patients who underwent prostate radiotherapy. We used 3D U-Net-based architecture to predict dose distributions from computed tomography and contours of the planning target volume and organs-at-risk. We trained two models using different loss functions: L2 loss and Lstruct. Predicted doses were compared in terms of dose-volume parameters and the Dice similarity coefficient of isodose volume. RESULTS DVH analysis showed that the Lstruct model had smaller errors from the ground truth than the L2 model. The Lstruct model achieved more consistent dose distributions than the L2 model, with errors close to zero. The isodose Dice score of the Lstruct model was greater than that of the L2 model by >20% of the prescribed dose. CONCLUSIONS We developed Lstruct using labels of inputted contours for DL-based dose prediction for prostate radiotherapy. Lstruct can be generalized to any DL architecture, thereby enhancing the dose prediction accuracy.
Collapse
Affiliation(s)
- Yuhei Koike
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan.
| | - Hideki Takegawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yusuke Anetai
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
8
|
Dose Prediction Models Based on Geometric and Plan Optimization Parameter for Adjuvant Radiotherapy Planning Design in Cervical Cancer Radiotherapy. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7026098. [PMID: 34804459 PMCID: PMC8604605 DOI: 10.1155/2021/7026098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022]
Abstract
The prediction of an additional space for the dose sparing of organs at risk (OAR) in radiotherapy is still difficult. In this pursuit, the present study was envisaged to find out the factors affecting the bladder and rectum dosimetry of cervical cancer. Additionally, the relationship between the dose-volume histogram (DVH) parameters and the geometry and plan dose-volume optimization parameters of the bladder/rectum was established to develop the dose prediction models and guide the planning design for lower OARs dose coverage directly. Thirty volume modulated radiation therapy (VMAT) plans from cervical cancer patients were randomly chosen to build the dose prediction models. The target dose coverage was evaluated. Dose prediction models were established by univariate and multiple linear regression among the dosimetric parameters of the bladder/rectum, the geometry parameters (planning target volume (PTV), volume of bladder/rectum, overlap volume of bladder/rectum (OV), and overlapped volume as a percentage of bladder/rectum volume (OP)), and corresponding plan dose-volume optimization parameters of the nonoverlapping structures (the structure of bladder/rectum outside the PTV (NOS)). Finally, the accuracy of the prediction models was evaluated by tracking d = (predicted dose-actual dose)/actual in additional ten VMAT plans. V 30, V 35, and V 40 of the bladder and rectum were found to be multiple linearly correlated with the relevant OP and corresponding dose-volume optimization parameters of NOS (regression R 2 > 0.99, P < 0.001). The variations of these models were less than 0.5% for bladder and rectum. Percentage of bladder and rectum within the PTV and the dose-volume optimization parameters of NOS could be used to predict the dose quantitatively. The parameters of NOS as a limited condition could be used in the plan optimization instead of limiting the dose and volume of the entire OAR traditionally, which made the plan optimization more unified and convenient and strengthened the plan quality and consistency.
Collapse
|
9
|
The feasibility of an approximate irregular field dose distribution simulation program applied to a respiratory motion compensation system. Phys Med 2021; 88:117-126. [PMID: 34237677 DOI: 10.1016/j.ejmp.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE This study optimized our previously proposed simulation program for the approximate irregular field dose distribution (SPAD) and applied it to a respiratory motion compensation system (RMCS) and respiratory motion simulation system (RMSS). The main purpose was to rapidly analyze the two-dimensional dose distribution and evaluate the compensation effect of the RMCS during radiotherapy. METHODS This study modified the SPAD to improve the rapid analysis of the dose distribution. In the experimental setup, four different respiratory signal patterns were input to the RMSS for actuation, and an ultrasound image tracking algorithm was used to capture the real-time respiratory displacement, which was input to the RMCS for actuation. A linear accelerator simultaneously irradiated the EBT3 film. The gamma passing rate was used to verify the dose similarity between the EBT3 film and the SPAD, and conformity index (CI) and compensation rate (CR) were used to quantify the compensation effect. RESULTS The Gamma passing rates were 70.48-81.39% (2%/2mm) and 88.23-96.23% (5%/3mm) for various collimator opening patterns. However, the passing rates of the SPAD and EBT3 film ranged from 61.85% to 99.85% at each treatment time point. Under the four different respiratory signal patterns, CR ranged between 21% and 75%. After compensation, the CI for 85%, 90%, and 95% isodose constraints were 0.78, 0.57, and 0.12, respectively. CONCLUSIONS This study has demonstrated that the dose change during each stage of the treatment process can be analyzed rapidly using the improved SPAD. After compensation, applying the RMCS can reduce the treatment errors caused by respiratory movements.
Collapse
|
10
|
Cilla S, Romano C, Morabito VE, Macchia G, Buwenge M, Dinapoli N, Indovina L, Strigari L, Morganti AG, Valentini V, Deodato F. Personalized Treatment Planning Automation in Prostate Cancer Radiation Oncology: A Comprehensive Dosimetric Study. Front Oncol 2021; 11:636529. [PMID: 34141608 PMCID: PMC8204695 DOI: 10.3389/fonc.2021.636529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background In radiation oncology, automation of treatment planning has reported the potential to improve plan quality and increase planning efficiency. We performed a comprehensive dosimetric evaluation of the new Personalized algorithm implemented in Pinnacle3 for full planning automation of VMAT prostate cancer treatments. Material and Methods Thirteen low-risk prostate (without lymph-nodes irradiation) and 13 high-risk prostate (with lymph-nodes irradiation) treatments were retrospectively taken from our clinical database and re-optimized using two different automated engines implemented in the Pinnacle treatment system. These two automated engines, the currently used Autoplanning and the new Personalized are both template-based algorithms that use a wish-list to formulate the planning goals and an iterative approach able to mimic the planning procedure usually adopted by experienced planners. In addition, the new Personalized module integrates a new engine, the Feasibility module, able to generate an “a priori” DVH prediction of the achievability of planning goals. Comparison between clinically accepted manually generated (MP) and automated plans generated with both Autoplanning (AP) and Personalized engines (Pers) were performed using dose-volume histogram metrics and conformity indexes. Three different normal tissue complication probabilities (NTCPs) models were used for rectal toxicity evaluation. The planning efficiency and the accuracy of dose delivery were assessed for all plans. Results For similar targets coverage, Pers plans reported a significant increase of dose conformity and less irradiation of healthy tissue, with significant dose reduction for rectum, bladder, and femurs. On average, Pers plans decreased rectal mean dose by 11.3 and 8.3 Gy for low-risk and high-risk cohorts, respectively. Similarly, the Pers plans decreased the bladder mean doses by 7.3 and 7.6 Gy for low-risk and high-risk cohorts, respectively. The integral dose was reduced by 11–16% with respect to MP plans. Overall planning times were dramatically reduced to about 7 and 15 min for Pers plans. Despite the increased complexity, all plans passed the 3%/2 mm γ-analysis for dose verification. Conclusions The Personalized engine provided an overall increase of plan quality, in terms of dose conformity and sparing of normal tissues for prostate cancer patients. The Feasibility “a priori” DVH prediction module provided OARs dose sparing well beyond the clinical objectives. The new Pinnacle Personalized algorithms outperformed the currently used Autoplanning ones as solution for treatment planning automation.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital-Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Carmela Romano
- Medical Physics Unit, Gemelli Molise Hospital-Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Vittoria E Morabito
- Medical Physics Unit, Gemelli Molise Hospital-Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital-Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,DIMES, Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Nicola Dinapoli
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Indovina
- Medical Physics Unit, Fondazione Policlinico Universitario A. Gemelli-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio G Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,DIMES, Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Vincenzo Valentini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli-Università Cattolica del Sacro Cuore, Rome, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Gemelli Molise Hospital-Università Cattolica del Sacro Cuore, Campobasso, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Wada Y, Monzen H, Tamura M, Otsuka M, Inada M, Ishikawa K, Doi H, Nakamatsu K, Nishimura Y. Dosimetric Evaluation of Simplified Knowledge-Based Plan with an Extensive Stepping Validation Approach in Volumetric-Modulated Arc Therapy-Stereotactic Body Radiotherapy for Lung Cancer. J Med Phys 2021; 46:7-15. [PMID: 34267484 PMCID: PMC8240912 DOI: 10.4103/jmp.jmp_67_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose: We investigated the performance of the simplified knowledge-based plans (KBPs) in stereotactic body radiotherapy (SBRT) with volumetric-modulated arc therapy (VMAT) for lung cancer. Materials and Methods: For 50 cases who underwent SBRT, only three structures were registered into knowledge-based model: total lung, spinal cord, and planning target volume. We performed single auto-optimization on VMAT plans in two steps: 19 cases used for the model training (closed-loop validation) and 16 new cases outside of training set (open-loop validation) for TrueBeam (TB) and Halcyon (Hal) linacs. The dosimetric parameters were compared between clinical plans (CLPs) and KBPs: CLPclosed, KBPclosed-TB and KBPclosed-Hal in closed-loop validation, CLPopen, KBPopen-TB and KBPopen-Hal in open-loop validation. Results: All organs at risk were comparable between CLPs and KBPs except for contralateral lung: V5 of KBPs was approximately 3%–7% higher than that of CLPs. V20 of total lung for KBPs showed comparable to CLPs; CLPclosed vs. KBPclosed-TB and CLPclosed vs. KBPclosed-Hal: 4.36% ± 2.87% vs. 3.54% ± 1.95% and 4.36 ± 2.87% vs. 3.54% ± 1.94% (P = 0.54 and 0.54); CLPopen vs. KBPopen-TB and CLPopen vs. KBPopen-Hal: 4.18% ± 1.57% vs. 3.55% ± 1.27% and 4.18% ± 1.57% vs. 3.67% ± 1.26% (P = 0.19 and 0.27). CI95 of KBPs with both linacs was superior to that of the CLP in closed-loop validation: CLPclosed vs. KBPclosed-TB vs. KBPclosed-Hal: 1.32% ± 0.12% vs. 1.18% ± 0.09% vs. 1.17% ± 0.06% (P < 0.01); and open-loop validation: CLPopen vs. KBPopen-TB vs. KBPopen-Hal: 1.22% ± 0.09% vs. 1.14% ± 0.04% vs. 1.16% ± 0.05% (P ≤ 0.01). Conclusions: The simplified KBPs with limited number of structures and without planner intervention were clinically acceptable in the dosimetric parameters for lung VMAT-SBRT planning.
Collapse
Affiliation(s)
- Yutaro Wada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Masakazu Otsuka
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, Osaka, Japan
| | - Masahiro Inada
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazuki Ishikawa
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hiroshi Doi
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
12
|
Wall PDH, Fontenot JD. Quality assurance-based optimization (QAO): Towards improving patient-specific quality assurance in volumetric modulated arc therapy plans using machine learning. Phys Med 2021; 87:136-143. [PMID: 33775567 DOI: 10.1016/j.ejmp.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Previous literature has shown general trade-offs between plan complexity and resulting quality assurance (QA) outcomes. However, existing solutions for controlling this trade-off do not guarantee corresponding improvements in deliverability. Therefore, this work explored the feasibility of an optimization framework for directly maximizing predicted QA outcomes of plans without compromising the dosimetric quality of plans designed with an established knowledge-based planning (KBP) technique. MATERIALS AND METHODS A support vector machine (SVM) was developed - using a database of 500 previous VMAT plans - to predict gamma passing rates (GPRs; 3%/3mm percent dose-difference/distance-to-agreement with local normalization) based on selected complexity features. A heuristic, QA-based optimization (QAO) framework was devised by utilizing the SVM model to iteratively modify mechanical treatment features most commonly associated with suboptimal GPRs. Specifically, leaf gaps (LGs) <50 mm were widened by random amounts, which impacts all aperture-based complexity features. 13 prostate KBP-guided VMAT plans were optimized via QAO using user-specified maximum LG displacements before corresponding changes in predicted GPRs and dose were assessed. RESULTS Predicted GPRs increased by an average of 1.14 ± 1.25% (p = 0.006) with QAO using a 3 mm maximum random LG displacement. There were small differences in dose, resulting in similarly small changes in tumor control probability (maximum increase = 0.05%) and normal tissue complication probabilities in the bladder, rectum, and femoral heads (maximum decrease = 0.2% in the rectum). CONCLUSION This study explored the feasibility of QAO and warrants future investigations of further incorporating QA endpoints into plan optimization.
Collapse
Affiliation(s)
- Phillip D H Wall
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Tower Drive, Baton Rouge, LA 70803-4001, USA.
| | - Jonas D Fontenot
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Tower Drive, Baton Rouge, LA 70803-4001, USA; Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, USA
| |
Collapse
|
13
|
Ito T, Tamura M, Monzen H, Matsumoto K, Nakamatsu K, Harada T, Fukui T. [Impact of Aperture Shape Controller on Knowledge-based VMAT Planning of Prostate Cancer]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:23-31. [PMID: 33473076 DOI: 10.6009/jjrt.2021_jsrt_77.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Knowledge-based planning (KBP) has disadvantages of high monitor unit (MU) and complex multi-leaf collimator (MLC) motion. We investigated the optimal aperture shape controller (ASC) level for the KBP to reduce these factors in volumetric modulated arc therapy (VMAT) for prostate cancer. METHODS The KBP model was created based on 51 clinical plans (CPs) of patients who underwent the VMAT for prostate cancer. Another 10 CPs were selected randomly, and the KBPs with/without ASC, changed stepwise from very low (KBP-VL) to very high (KBP-VH), were performed with a single auto-optimization. The parameters of dose-volume histograms (DVHs) and MLC performance metrics were evaluated. We obtained the modulation complexity score for VMAT (MCSv), closed leaf score (CLS), small aperture score (SAS), leaf travel (LT), and total MU. RESULTS The ASC did not affect the DVH parameters negatively. The following comparisons of MLC performance were obtained (KBP vs. KBP-VL vs. KBP-VH, respectively): 0.25 vs. 0.27 vs. 0.30 (MCSv), 0.19 vs. 0.18 vs. 0.16 (CLS), 0.50 vs. 0.45 vs. 0.40 (SAS10 mm), 0.73 vs. 0.68 vs. 0.63 (SAS20 mm), 768.35 mm vs. 671.50 mm vs. 551.32 mm (LT), and 672.87 vs. 642.36 vs. 607.59 (MU). There were significant differences between KBP and KBP-VH for MCSv and LT (p<0.05). CONCLUSIONS The KBP using an ASC set to the very high level could reduce the complexity of MLC motion significantly more without deterioration of the DVH parameters compared with the KBP in VMAT for prostate cancer.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
| | - Kenji Matsumoto
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University.,Department of Radiology, Kindai University Hospital
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Faculty of Medicine, Kindai University
| | - Tomoko Harada
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center
| | - Tatsuya Fukui
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center
| |
Collapse
|
14
|
Hu J, Liu B, Xie W, Zhu J, Yu X, Gu H, Wang M, Wang Y, Qi Z. Quantitative Comparison of Knowledge-Based and Manual Intensity Modulated Radiation Therapy Planning for Nasopharyngeal Carcinoma. Front Oncol 2021; 10:551763. [PMID: 33489869 PMCID: PMC7817947 DOI: 10.3389/fonc.2020.551763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE To validate the feasibility and efficiency of a fully automatic knowledge-based planning (KBP) method for nasopharyngeal carcinoma (NPC) cases, with special attention to the possible way that the success rate of auto-planning can be improved. METHODS AND MATERIALS A knowledge-based dose volume histogram (DVH) prediction model was developed based on 99 formerly treated NPC patients, by means of which the optimization objectives and the corresponding priorities for intensity modulation radiation therapy (IMRT) planning were automatically generated for each head and neck organ at risk (OAR). The automatic KBP method was thus evaluated in 17 new NPC cases with comparison to manual plans (MP) and expert plans (EXP) in terms of target dose coverage, conformity index (CI), homogeneity index (HI), and normal tissue protection. To quantify the plan quality, a metric was applied for plan evaluation. The variation in the plan quality and time consumption among planners was also investigated. RESULTS With comparable target dose distributions, the KBP method achieved a significant dose reduction in critical organs such as the optic chiasm (p<0.001), optic nerve (p=0.021), and temporal lobe (p<0.001), but failed to spare the spinal cord (p<0.001) compared with MPs and EXPs. The overall plan quality evaluation gave mean scores of 144.59±11.48, 142.71±15.18, and 144.82±15.17, respectively, for KBPs, MPs, and EXPs (p=0.259). A total of 15 out of 17 KBPs (i.e., 88.24%) were approved by our physician as clinically acceptable. CONCLUSION The automatic KBP method using the DVH prediction model provided a possible way to generate clinically acceptable plans in a short time for NPC patients.
Collapse
Affiliation(s)
- Jiang Hu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Boji Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Weihao Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinhan Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoli Yu
- Sun Yat-sen Memory Hospital, Guangzhou, China
| | - Huikuan Gu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mingli Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yixuan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - ZhenYu Qi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|