1
|
Cheng SH, Lee SY, Lee HH. Harnessing the Power of Radiotherapy for Lung Cancer: A Narrative Review of the Evolving Role of Magnetic Resonance Imaging Guidance. Cancers (Basel) 2024; 16:2710. [PMID: 39123438 PMCID: PMC11311467 DOI: 10.3390/cancers16152710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Compared with computed tomography (CT), magnetic resonance imaging (MRI) traditionally plays a very limited role in lung cancer management, although there is plenty of room for improvement in the current CT-based workflow, for example, in structures such as the brachial plexus and chest wall invasion, which are difficult to visualize with CT alone. Furthermore, in the treatment of high-risk tumors such as ultracentral lung cancer, treatment-associated toxicity currently still outweighs its benefits. The advent of MR-Linac, an MRI-guided radiotherapy (RT) that combines MRI with a linear accelerator, could potentially address these limitations. Compared with CT-based technologies, MR-Linac could offer superior soft tissue visualization, daily adaptive capability, real-time target tracking, and an early assessment of treatment response. Clinically, it could be especially advantageous in the treatment of central/ultracentral lung cancer, early-stage lung cancer, and locally advanced lung cancer. Increasing demands for stereotactic body radiotherapy (SBRT) for lung cancer have led to MR-Linac adoption in some cancer centers. In this review, a broad overview of the latest research on imaging-guided radiotherapy (IGRT) with MR-Linac for lung cancer management is provided, and development pertaining to artificial intelligence is also highlighted. New avenues of research are also discussed.
Collapse
Affiliation(s)
- Sarah Hsin Cheng
- Department of Clinical Education and Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shao-Yun Lee
- Department of Medical Education, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsin-Hua Lee
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Fujimoto D, Takatsu J, Hara N, Oshima M, Tomihara J, Segawa E, Inoue T, Shikama N. Dosimetric comparison of four-dimensional computed tomography based internal target volume against variations in respiratory motion during treatment between volumetric modulated arc therapy and three-dimensional conformal radiotherapy in lung stereotactic body radiotherapy. Radiol Phys Technol 2024; 17:143-152. [PMID: 37930563 DOI: 10.1007/s12194-023-00757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
This study focused on the dosimetric impact of variations in respiratory motion during lung stereotactic body radiotherapy (SBRT). Dosimetric comparisons between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3DCRT) were performed using four-dimensional computed tomography (4DCT)-based internal target volumes (ITV). We created retrospective plans for ten patients with lung cancer who underwent SBRT using 3DCRT and VMAT techniques. A Delta4 Phantom + (ScandiDos, Uppsala, Sweden) was used to evaluate the dosimetric robustness of 4DCT-based ITV against variations in respiratory motion during treatment. We analyzed respiratory motion during treatment. Dose-volume histogram parameters were evaluated for the 95% dose (D95%) to the planning target volume (PTV) contoured on CT images obtained under free breathing. The correlations between patient respiratory parameters and dosimetric errors were also evaluated. In the phantom study, the average PTV D95% dose differences for all fractions were - 2.9 ± 4.4% (- 16.0 - 1.2%) and - 2.0 ± 2.8% (- 11.2 - 0.7%) for 3DCRT and VMAT, respectively. The average dose difference was < 3% for both 3DCRT and VMAT; however, in 5 out of 42 fractions in 3DCRT, the difference in PTV D95% was > 10%. Dosimetric errors were correlated with respiratory amplitude and velocity, and differences in respiratory amplitude between 4DCT and treatment days were the main factors causing dosimetric errors. The overall average dose error of the PTV D95% was small; however, both 3DCRT and VMAT cases exceeding 10% error were observed. Larger errors occurred with amplitude variation or baseline drift, indicating limited robustness of 4DCT-based ITV.
Collapse
Affiliation(s)
- Daimu Fujimoto
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Takatsu
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Naoya Hara
- Department of Radiology, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Masaki Oshima
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Tomihara
- Department of Radiology, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Eisuke Segawa
- Department of Radiology, Juntendo University Hospital, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Tatsuya Inoue
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Radiology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Naoto Shikama
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
3
|
Gill A, Hirst AL, Rowshanfarzad P, Gill S, Bucknell N, Dass J, Sabet M. Stereotactic body radiotherapy for early-stage lung cancer: a systematic review on the choice of photon energy and linac flattened/unflattened beams. Radiat Oncol 2024; 19:1. [PMID: 38167095 PMCID: PMC10762943 DOI: 10.1186/s13014-023-02392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
SBRT is an effective local treatment for patients with early-stage non-small cell lung cancer (NSCLC). This treatment is currently used in patients who have poor lung function or who decline surgery. As SBRT usually has small PTV margins, reducing the beam-on-time (BOT) is beneficial for accurate dose delivery by minimising intrafraction motion as well as improved patient comfort. Removal of the linear accelerator flattening filter can provide a higher dose rate which results in a faster treatment. In addition, the choice of photon energy can also affect the dose distribution to the target and the organs-at-risk (OAR). In this systematic review, studies analysing the choice of various photon beam energies, with a flattening filter or flattening filter free (FFF), were compared for their overall dosimetric benefit in the SBRT treatment for early-stage NSCLC. It was found that FFF treatment delivers a comparatively more conformal dose distribution, as well as a better homogeneity index and conformity index, and typically reduces BOT by between 30 and 50%. The trade-off may be a minor increase in monitor units for FFF treatment found in some studies but not others. Target conformity and OAR sparing, particularly lung doses appear better with 6MV FFF, but 10MV FFF was marginally more advantageous for skin sparing and BOT reduction. The favourable beam modality for clinical use would depend on the individual case, for which tumour size and depth, radiotherapy technique, as well as fractionation scheme need to be taken into account.
Collapse
Affiliation(s)
- Ashlesha Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Andrew L Hirst
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Nicholas Bucknell
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Joshua Dass
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Mahsheed Sabet
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| |
Collapse
|
4
|
Sohn JJ, Lim S, Das IJ, Yadav P. An integrated and fast imaging quality assurance phantom for a 0.35 T magnetic resonance imaging linear accelerator. Phys Imaging Radiat Oncol 2023; 27:100462. [PMID: 37449023 PMCID: PMC10338140 DOI: 10.1016/j.phro.2023.100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Periodic imaging quality assurance (QA) of magnetic resonance imaging linear accelerator (MRL) is critical. The feasibility of a new MRL imaging phantom used for QA in the low field was evaluated with automated image analysis of various parameters for accuracy and reproducibility. Methods and materials The new MRL imaging phantom was scanned across every 30 degrees of the gantry, having the on/off state of the linac in a low-field MRL system using three magnetic resonance imaging sequences: true fast imaging with steady-state precession (TrueFISP), T1 weighted (T1W), and T2 weighted (T2W). The DICOM files were used to calculate the imaging parameters: geometric distortion, uniformity, resolution, signal-to-noise ratio (SNR), and laser alignment. The point spread function (PSF) and edge spread function (ESF) were also calculated for resolution analysis. Results The phantom data showed a small standard deviation - and high consistency for each imaging parameter. The highest variability in data was observed with the true fast imaging sequence at the calibration angle, which was expected because of low resolution and short scan time (25 sec). The mean magnitude of the largest distortion measured within 200 mm diameter with TrueFISP was 0.31 ± 0.05 mm. The PSF, ESF, signal uniformity, and SNR measurements remained consistent. Laser alignment traditional offsets and angular deviation remained consistent. Conclusions The new MRL imaging phantom is reliable, reproducible, time effective, and easy to use for a 0.35 T MRL system. The results promise a more streamlined, time-saving, and error-free QA process for low-field MRL adapted in our clinical setting.
Collapse
Affiliation(s)
| | | | | | - Poonam Yadav
- Corresponding author at: Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Wu J, Song H, Li J, Tang B, Wu F. Evaluation of flattening-filter-free and flattening filter dosimetric and radiobiological criteria for lung SBRT: A volume-based analysis. Front Oncol 2023; 13:1108142. [PMID: 36761961 PMCID: PMC9903338 DOI: 10.3389/fonc.2023.1108142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction The use of volumetric modulated arc therapy (VMAT) with flattening-filter-free (FFF) beams is becoming more prevalent in lung cancer stereotactic body radiotherapy (SBRT). The aim in this study was to assess the impact of dosimetric and radiobiological differences between FFF and flattening filter (FF) beams for lung SBRT based on the target volume. Methods A total of 198 lung stereotactic body radiation therapy treatment plans with FFF beams and FF beams were retrospectively selected for this study. For all plans, the prescribed dose was 50 Gy/5 fractions, and the dose volume histogram (DVH) for the target and organs at risk (OAR) and the normal tissue complication probability (NTCP) of the lung were recorded and compared. Moreover, monitor units (MUs), the beam on-time and the treatment time were evaluated. Results The study was performed following the Radiation Therapy Oncology Group (RTOG) 0813 and 0915 protocols. No significant differences in D90, coverage rate (CR) or conformity index (CI) of the target were observed between FFF beams and FF beams (p>0.05). The D2, R50% and gradient index (GI) for the target improved with FFF beams compared with FF beams (p<0.05). FFF beams also significantly reduced the dose for the lung, heart, spinal cord, esophagus and NTCP of the lung (p<0.05), compared with FF beams. However, there was no significant difference in sparing of the trachea (p>0.05). The mean MUs, beam on-time and treatment time were 1871 ± 278 MUs, 3.2 ± 0.2 min and 3.9 ± 0.3 min for FFF beams, and 1890 ± 260 MUs, 4.2 ± 0.3 min and 4.8 ± 0.4 min for FF beams, respectively. Discussion The FFF beam technique for lung SBRT with VMAT results in a better dose fall-off, better dose-sparing of OAR, lower NTCP of the lung and a shorter beam on-time compared with the FF beam technique. Additionally, the improvement in target and OAR-sparing for FFF beams was increased with increasing target volume.
Collapse
Affiliation(s)
- Junxiang Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongchang Song
- Department of Oncology, Xichang People’s Hospital, Xichang, China
| | - Jie Li
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Tang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Kang TM, Hardcastle N, Singh AK, Slotman BJ, Videtic GMM, Stephans KL, Couñago F, Louie AV, Guckenberger M, Harden SV, Plumridge NM, Siva S. Practical considerations of single-fraction stereotactic ablative radiotherapy to the lung. Lung Cancer 2022; 170:185-193. [PMID: 35843149 DOI: 10.1016/j.lungcan.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) is a well-established treatment for patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) and pulmonary oligometastases. The use of single-fraction SABR in this setting is supported by excellent local control and safety profiles which appear equivalent to multi-fraction SABR based on the available data. The resource efficiency and reduction in hospital outpatient visits associated with single-fraction SABR have been particularly advantageous during the COVID-19 pandemic. Despite the increased interest, single-fraction SABR in subgroups of patients remains controversial, including those with centrally located tumours, synchronous targets, proximity to dose-limiting organs at risk, and concomitant severe respiratory illness. This review provides an overview of the published randomised evidence evaluating single-fraction SABR in primary lung cancer and pulmonary oligometastases, the common clinical challenges faced, immunogenic effect of SABR, as well as technical and cost-utility considerations.
Collapse
Affiliation(s)
- Therese Mj Kang
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Gregory M M Videtic
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Kevin L Stephans
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid, Spain
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susan V Harden
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nikki M Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia.
| |
Collapse
|
7
|
Vassiliev ON, Peterson CB, Chang JY, Mohan R. Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022; 21:81-87. [PMID: 35401050 PMCID: PMC8992779 DOI: 10.1017/s1460396920000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aim Previous studies showed that replacing conventional flattened beams (FF) with flattening filter-free (FFF) beams improves the therapeutic ratio in lung stereotactic body radiation therapy (SBRT), but these findings could have been impacted by dose calculation uncertainties caused by the heterogeneity of the thoracic anatomy and by respiratory motion, which were particularly high for target coverage. In this study, we minimized such uncertainties by calculating doses using high-spatial-resolution Monte Carlo and four-dimensional computed tomography (4DCT) images. We aimed to evaluate more reliably the benefits of using FFF beams for lung SBRT. Materials and methods For a cohort of 15 patients with early stage lung cancer that we investigated in a previous treatment planning study, we recalculated dose distributions with Monte Carlo using 4DCT images. This included fifteen FF and fifteen FFF treatment plans. Results Compared to Monte Carlo, the treatment planning system (TPS) over-predicted doses in low-dose regions of the planning target volume. For most patients, replacing FF beams with FFF beams improved target coverage, tumor control, and uncomplicated tumor control probabilities. Conclusions Monte Carlo tends to reveal deficiencies in target coverage compared to coverage predicted by the TPS. Our data support previously reported benefits of using FFF beams for lung SBRT.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Visak J, Webster A, Bernard ME, Kudrimoti M, Randall ME, McGarry RC, Pokhrel D. Fast generation of lung SBRT plans with a knowledge-based planning model on ring-mounted Halcyon Linac. J Appl Clin Med Phys 2021; 22:54-63. [PMID: 34562308 PMCID: PMC8598154 DOI: 10.1002/acm2.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To demonstrate fast treatment planning feasibility of stereotactic body radiation therapy (SBRT) for centrally located lung tumors on Halcyon Linac via a previously validated knowledge‐based planning (KBP) model to support offline adaptive radiotherapy. Materials/methods Twenty previously treated non‐coplanar volumetric‐modulated arc therapy (VMAT) lung SBRT plans (c‐Truebeam) on SBRT‐dedicated C‐arm Truebeam Linac were selected. Patients received 50 Gy in five fractions. c‐Truebeam plans were re‐optimized for Halcyon manually (m‐Halcyon) and with KBP model (k‐Halcyon). Both m‐Halcyon and k‐Halcyon plans were normalized for identical or better target coverage than clinical c‐Truebeam plans and compared for target conformity, dose heterogeneity, dose fall‐off, and dose tolerances to the organs‐at‐risk (OAR). Treatment delivery parameters and planning times were evaluated. Results k‐Halcyon plans were dosimetrically similar or better than m‐Halcyon and c‐Truebeam plans. k‐Halcyon and m‐Halcyon plan comparisons are presented with respect to c‐Truebeam. Differences in conformity index were statistically insignificant in k‐Halcyon and on average 0.02 higher (p = 0.04) in m‐Halcyon plans. Gradient index was on average 0.43 (p = 0.006) lower and 0.27 (p = 0.02) higher for k‐Halcyon and m‐Halcyon, respectively. Maximal dose 2 cm away in any direction from target was statistically insignificant. k‐Halcyon increased maximal target dose on average by 2.9 Gy (p < 0.001). Mean lung dose was on average reduced by 0.10 Gy (p = 0.004) in k‐Halcyon and increased by 0.14 Gy (p < 0.001) in m‐Halcyon plans. k‐Halcyon plans lowered bronchial tree dose on average by 1.2 Gy. Beam‐on‐time (BOT) was increased by 2.85 and 1.67 min, on average for k‐Halcyon and m‐Halcyon, respectively. k‐Halcyon plans were generated in under 30 min compared to estimated dedicated 180 ± 30 min for m‐Halcyon or c‐Truebeam plan. Conclusion k‐Halcyon plans were generated in under 30 min with excellent plan quality. This adaptable KBP model supports high‐volume clinics in the expansion or transfer of lung SBRT patients to Halcyon.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Webster
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Ghemiş DM, Marcu LG. Progress and prospects of flattening filter free beam technology in radiosurgery and stereotactic body radiotherapy. Crit Rev Oncol Hematol 2021; 163:103396. [PMID: 34146680 DOI: 10.1016/j.critrevonc.2021.103396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to summarize and evaluate the current status of knowledge on flattening filter free (FFF) beams and their applications in stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). A PubMed search was undertaken in order to identify relevant publications using FFF and stereotactic radiotherapy as keywords. On a clinical aspect, lung tumors treated with FFF SBRT show promising results in terms of local control and overall survival with acute toxicities consistent with those that occur with standard radiotherapy. Beside lung, SBRT is suitable for different anatomical sites such as liver, prostate, cervix, etc. offering similar results: reduced treatment time, good tumor control and mild acute toxicities. Regarding brain tumors, the employment of SRS with FFF beams significantly reduces treatment time and provides notable normal tissue sparing due to the sharp dose fall-off outside the tumor.
Collapse
Affiliation(s)
- Diana M Ghemiş
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
10
|
Pokhrel D, Visak J, Critchfield LC, Stephen J, Bernard ME, Randall M, Kudrimoti M. Clinical validation of ring-mounted halcyon linac for lung SBRT: comparison to SBRT-dedicated C-arm linac treatments. J Appl Clin Med Phys 2020; 22:261-270. [PMID: 33342070 PMCID: PMC7856490 DOI: 10.1002/acm2.13146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) of lung tumors via the ring‐mounted Halcyon Linac, a fast kilovoltage cone beam CT‐guided treatment with coplanar geometry, a single energy 6MV flattening filter free (FFF) beam and volumetric modulated arc therapy (VMAT) is a fast, safe, and feasible treatment modality for selected lung cancer patients. Four‐dimensional (4D) CT‐based treatment plans were generated using advanced AcurosXB algorithm with heterogeneity corrections using an SBRT board and Halcyon couch insert. Halcyon VMAT‐SBRT plans with stacked and staggered multileaf collimators produced highly conformal radiosurgical dose distribution to the target, lower intermediate dose spillage, and similar dose to adjacent organs at risks (OARs) compared to SBRT‐dedicated highly conformal clinical noncoplanar Truebeam VMAT plans following the RTOG‐0813 requirements. Due to low monitor units per fraction and less multileaf collimator (MLC) modulation, the Halcyon VMAT plan can deliver lung SBRT fractions with an overall treatment time of less than 15 min (for 50 Gy in five fractions), significantly improving patient comfort and clinic workflow. Higher pass rates of quality assurance results demonstrate a more accurate treatment delivery on Halcyon. We have implemented Halcyon for lung SBRT treatment in our clinic. We suggest others use Halcyon for lung SBRT treatments using abdominal compression or 4D CT‐based treatment planning, thus expanding the access of curative ultra‐hypofractionated treatments to other centers with only a Halcyon Linac. Clinical follow‐up results for patients treated on Halcyon Linac with lung SBRT is ongoing.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Lana C Critchfield
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Joseph Stephen
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Marcus Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - Mahesh Kudrimoti
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
11
|
Visak J, Ge GY, McGarry RC, Randall M, Pokhrel D. An Automated knowledge-based planning routine for stereotactic body radiotherapy of peripheral lung tumors via DCA-based volumetric modulated arc therapy. J Appl Clin Med Phys 2020; 22:109-116. [PMID: 33270975 PMCID: PMC7856484 DOI: 10.1002/acm2.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To develop a knowledge‐based planning (KBP) routine for stereotactic body radiotherapy (SBRT) of peripherally located early‐stage non‐small‐cell lung cancer (NSCLC) tumors via dynamic conformal arc (DCA)‐based volumetric modulated arc therapy (VMAT) using the commercially available RapidPlanTM software. This proposed technique potentially improves plan quality, reduces complexity, and minimizes interplay effect and small‐field dosimetry errors associated with treatment delivery. Methods KBP model was developed and validated using 70 clinically treated high quality non‐coplanar VMAT lung SBRT plans for training and 20 independent plans for validation. All patients were treated with 54 Gy in three treatments. Additionally, a novel k‐DCA planning routine was deployed to create plans incorporating historical three‐dimensional‐conformal SBRT planning practices via DCA‐based approach prior to VMAT optimization in an automated planning engine. Conventional KBPs and k‐DCA plans were compared with clinically treated plans per RTOG‐0618 requirements for target conformity, tumor dose heterogeneity, intermediate dose fall‐off and organs‐at‐risk (OAR) sparing. Treatment planning time, treatment delivery efficiency, and accuracy were recorded. Results KBPs and k‐DCA plans were similar or better than clinical plans. Average planning target volume for validation was 22.4 ± 14.1 cc (7.1–62.3 cc). KBPs and k‐DCA plans provided similar conformity to clinical plans with average absolute differences of 0.01 and 0.01, respectively. Maximal doses to OAR were lowered in both KBPs and k‐DCA plans. KBPs increased monitor units (MU) on average 1316 (P < 0.001) while k‐DCA reduced total MU on average by 1114 (P < 0.001). This routine can create k‐DCA plan in less than 30 min. Independent Monte Carlo calculation demonstrated that k‐DCA plans showed better agreement with planned dose distribution. Conclusion A k‐DCA planning routine was developed in concurrence with a knowledge‐based approach for the treatment of peripherally located lung tumors. This method minimizes plan complexity associated with model‐based KBP techniques and improve plan quality and treatment planning efficiency.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Gary Y Ge
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Marcus Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Finazzi T, van Sörnsen de Koste JR, Palacios MA, Spoelstra FO, Slotman BJ, Haasbeek CJ, Senan S. Delivery of magnetic resonance-guided single-fraction stereotactic lung radiotherapy. Phys Imaging Radiat Oncol 2020; 14:17-23. [PMID: 33458309 PMCID: PMC7807654 DOI: 10.1016/j.phro.2020.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Single-fraction stereotactic ablative radiotherapy (SABR) is an effective treatment for early-stage lung cancer, but concerns remain about the accurate delivery of SABR in a single session. We evaluated the delivery of single-fraction lung SABR using magnetic resonance (MR)-guidance. MATERIALS AND METHODS An MR-simulation was performed in 17 patients, seven of whom were found to be unsuitable, largely due to unreliable tracking of small tumors. Ten patients underwent single-fraction SABR to 34 Gy on a 0.35 T MR-linac system, with online plan adaptation. Gated breath-hold SABR was delivered using a planning target volume (PTV) margin of 5 mm, and a 3 mm gating window. Continuous MR-tracking of the gross tumor volume (GTVt) was performed in sagittal plane, with visual patient feedback provided using an in-room monitor. The real-time MR images were analyzed to determine precision and efficiency of gated delivery. RESULTS All but one patient completed treatment in a single session. The median total in-room procedure was 120 min, with a median SABR delivery session of 39 min. Review of 7.4 h of cine-MR imaging revealed a mean GTVt coverage by the PTV during beam-on of 99.6%. Breath-hold patterns were variable, resulting in a mean duty cycle efficiency of 51%, but GTVt coverage was not influenced due to real-time MR-guidance. On-table adaptation improved PTV coverage, but had limited impact on GTV doses. CONCLUSIONS Single-fraction gated SABR of lung tumors can be performed with high precision using MR-guidance. However, improvements are needed to ensure MR-tracking of small tumors, and to reduce treatment times.
Collapse
Affiliation(s)
- Tobias Finazzi
- Corresponding author at: Amsterdam University Medical Centers, Location VUmc, Postbox 7057, 1007 MB Amsterdam, The Netherlands.
| | | | - Miguel A. Palacios
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Femke O.B. Spoelstra
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Berend J. Slotman
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J.A. Haasbeek
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|