1
|
Belikhin M, Shemyakov A, Chernyaev A, Pryanichnikov A. Dosimetric Evaluation of Target Motion Effects in Spot-Scanning Proton Therapy: A Phantom Study. Int J Part Ther 2024; 11:100013. [PMID: 38757083 PMCID: PMC11095096 DOI: 10.1016/j.ijpt.2024.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose To evaluate intrafractional motion effects as a function of peak-to-peak motion and period during single-field, single-fraction and single-field, multifraction irradiation of the moving target in spot-scanning proton therapy. Materials and Methods An in-house dynamic phantom was used to simulate peak-to-peak motion of 5, 10, and 20 mm with periods of 2, 4, and 8 seconds. The dose distribution in the moving target was measured using radiochromic films. During the perpendicular motion, the film was fixed and moved perpendicular to the beam direction without changing the water equivalent thickness (WET). During longitudinal motion, the film was fixed and moved along the beam direction, causing a change in WET. Gamma index analysis was used with criteria of 3%/3 mm and 3%/2 mm to analyze the dose distributions. Results For single-fraction irradiation, varying the period did not result in a significant difference in any of the metrics used (P > .05), except for the local dose within the planning target volume (P < .001). In contrast, varying peak-to-peak motion was significant (P < .001) for all metrics except for the mean planning target volume dose (P ≈ .88) and the local dose (P ≈ .47). The perpendicular motion caused a greater decrease in gamma passing rate (3%/3 mm) than WET variations (65% ± 5% vs 85% ± 4%) at 20 mm peak-to-peak motion. Conclusion The implementation of multifraction irradiation allowed to reduce hot and cold spots but did not reduce dose blurring. The motion threshold varied from 7 to 11 mm and depended on the number of fractions, the type of motion, the acceptance criteria, and the calculation method used.
Collapse
Affiliation(s)
- Mikhail Belikhin
- JSC Protom, Protvino, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Alexander Pryanichnikov
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Tominaga Y, Oita M, Miyata J, Kato T. Experimental validation of a 4D dynamic dose calculation model for proton pencil beam scanning without spot time stamp considering free-breathing motion. Med Phys 2024; 51:566-578. [PMID: 37672227 DOI: 10.1002/mp.16725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
PURPOSE We developed a 4-dimensional dynamic dose (4DDD) calculation model for proton pencil beam scanning (PBS). This model incorporates the spill start time for all energies and uses the remaining irradiated spot time model instead of irradiated spot time logs. This study aimed to validate the calculation accuracy of a log file-based 4DDD model by comparing it with dose measurements performed under free-breathing conditions, thereby serving as an alternative approach to the conventional log file-based system. METHODS Three cubic verification plans were created using a heterogeneous block phantom; these plans were created using 10 phase 4D-CT datasets of the phantom. The CIRS dynamic platform was used to simulate motion with amplitudes of 2.5, 3.75, and 5.0 mm. These plans consisted of eight- and two-layered rescanning techniques. The lateral profiles were measured using a 2D ionization chamber array (2D-array) and EBT3 Gafchromic films at four starting phases, including three sinusoidal curves (periods of 3, 4, and 6 s) and a representative patient curve during actual treatment. 4DDDs were calculated using in-house scripting that assigned a time stamp to each spot and performed dose accumulation using deformable image registration. Furthermore, to evaluate the impact of parameter selection on our 4DDD model calculations, simulations were performed assuming a ±10% change in irradiation time stamp (0.8 ± 0.08 s) and spot scan speed. We evaluated the 2D gamma index and the absolute point doses between the calculated values and the measurements. RESULTS The 2D-array measurements revealed that the gamma scores for the static plans (no motion) and 4DDD plans exceeded 97.5% and 93.9% at 3%/3 mm, respectively. The average gamma score of the 4DDD plans was at least 96.1%. When using EBT3 films, the gamma scores of the 4DDD model exceeded 92.4% and 98.7% at 2%/2 mm and 3%/3 mm, respectively. Regarding the 4DDD point dose differences, more than 95% of the dose regions exhibited discrepancies within ±5.0% for 97.7% of the total points across all plans. The spot time assignment accuracy of our 4DDD model was acceptable even with ±10% sensitivity. However, the accuracy of the scan speed, when varied within ±10% sensitivity, was not acceptable (minimum gamma scores of 82.6% and maximum dose difference of 12.9%). CONCLUSIONS Our 4DDD calculations under free-breathing conditions using amplitudes of less than 5.0 mm were in good agreement with the measurements regardless of the starting phases, breathing curve patterns (between 3 and 6 s periods), and varying numbers of layered rescanning. The proposed system allows us to evaluate actual irradiated doses in various breathing periods, amplitudes, and starting phases, even on PBS machines without the ability to record spot logs.
Collapse
Affiliation(s)
- Yuki Tominaga
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Osaka Proton Therapy Clinic, Department of Radiotherapy, Medical Co. Hakuhokai, Osaka, Osaka, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Okayama, Japan
| | - Junya Miyata
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Radiological Technology, Kurashiki Central Hospital, Okayama, Japan
| | - Takahiro Kato
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Koriyama, Fukushima, Japan
| |
Collapse
|
3
|
Worm ES, Hansen R, Høyer M, Weber B, Mortensen H, Poulsen PR. Uniform versus non-uniform dose prescription for proton stereotactic body radiotherapy of liver tumors investigated by extensive motion-including treatment simulations. Phys Med Biol 2021; 66. [PMID: 34544071 DOI: 10.1088/1361-6560/ac2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Compared to x-ray-based stereotactic body radiotherapy (SBRT) of liver cancer, proton SBRT may reduce the normal liver tissue dose. For an optimal trade-off between target and liver dose, a non-uniform dose prescription is often applied in x-ray SBRT, but lacks investigation for proton SBRT. Also, proton SBRT is prone to breathing-induced motion-uncertainties causing target mishit or dose alterations by interplay with the proton delivery. This study investigated non-uniform and uniform dose prescription in proton-based liver SBRT, including effects of rigid target motion observed during planning-4DCT and treatment. The study was based on 42 x-ray SBRT fractions delivered to 14 patients under electromagnetic motion-monitoring. For each patient, a non-uniform and uniform proton plan were made. The uniform plan was renormalized to be iso-toxic with the non-uniform plan using a NTCP model for radiation-induced liver disease. The motion data were used in treatment simulations to estimate the delivered target dose with rigid motion. Treatment simulations were performed with and without a repainting scheme designed to mitigate interplay effects. Including rigid motion, the achieved CTV mean dose after three fractions delivered without repainting was on average (±SD) 24.8 ± 8.4% higher and the D98%was 16.2 ± 11.3% higher for non-uniform plans than for uniform plans. The interplay-induced increase in D2%relative to the static plans was reduced from 3.2 ± 4.1% without repainting to -0.5 ± 1.7% with repainting for non-uniform plans and from 1.5 ± 2.0% to 0.1 ± 1.3% for uniform plans. Considerable differences were observed between estimated CTV doses based on 4DCT motion and intra-treatment motion. In conclusion, non-uniform dose prescription in proton SBRT may provide considerably higher tumor doses than uniform prescription for the same complication risk. Due to motion variability, target doses estimated from 4DCT motion may not accurately reflect the delivered dose. Future studies including modelling of deformations and associated range uncertainties are warranted to confirm the findings.
Collapse
Affiliation(s)
| | - Rune Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Hanna Mortensen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
den Boer E, Wulff J, Mäder UI, Engwall E, Bäumer C, Perko Z, Timmermann B. Technical Note: Investigating interplay effects in pencil beam scanning proton therapy with a 4D XCAT phantom within the RayStation treatment planning system. Med Phys 2021; 48:1448-1455. [PMID: 33411339 DOI: 10.1002/mp.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Pencil beam scanning (PBS) for moving targets is known to be impacted by interplay effects. Four-dimensional computed tomography (4DCT)-based motion evaluation is crucial for understanding interplay and developing mitigation strategies. Availability of high-quality 4DCTs with variable breathing traces is limited. Purpose of this work is the development of a framework for interplay analysis using 4D-XCAT phantoms in conjunction with time-resolved irradiation patterns in a commercial treatment planning system (TPS). Four-dimensional dynamically accumulated dose distributions (4DDDs) are simulated in an in-silico study for a PBS liver treatment. METHODS An XCAT phantom with 50 phases, varying linearly in amplitude each by 1 mm, was combined with the RayStation TPS (7.99.10). Deformable registration was used with time-resolved dose calculation, mapping XCAT phases to motion signals. To illustrate the applicability of the method a two-field liver irradiation plan was used. A variety sin4 type motion signals, varying in amplitude (1-20 mm), period (1.6-5.2 s) and phase (0-2π) were applied. Either single variable variations or random combinations were selected. The interplay effect within a clinical target (5 cm diameter) was characterized in terms of homogeneity index (HI5), with and without five paintings. In total 2092 scenarios were analyzed within RayStation. RESULTS A framework is presented for interplay research, allowing for flexibility in determining motion management techniques, increasing reproducibility, and enabling comparisons of different methods. A case study showed the interplay effect was correlated with amplitude and strongly affected by the starting phase, leading to large variance. The average of all scenarios (single fraction) resulted in HI5 of 0.31 (±0.11), while introduction of five times layered repainting reduced this to 0.11(±0.03). CONCLUSION The developed framework, which uses the XCAT phantom and RayStation, allows detailed analysis of motion in context of PBS with comparable results to clinical cases. Flexibility in defining motion patterns for detailed anatomies in combination with time-resolved dose calculation, facilitates investigation of optimal treatment and motion mitigation strategies.
Collapse
Affiliation(s)
- Erik den Boer
- West German Proton Therapy Center Essen (WPE), Essen, Germany.,Technical University Delft, Delft, Netherlands
| | - Jörg Wulff
- West German Proton Therapy Center Essen (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,Institute of Medical Physics and Radiation Protection (IMPS), Technical University Mittelhessen, Gießen, Germany
| | - UIf Mäder
- Institute of Medical Physics and Radiation Protection (IMPS), Technical University Mittelhessen, Gießen, Germany
| | | | - Christian Bäumer
- West German Proton Therapy Center Essen (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,TU Dortmund University, Dortmund, Germany
| | | | - Beate Timmermann
- West German Proton Therapy Center Essen (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Center (WTZ), Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Particle Therapy, Essen, Germany
| |
Collapse
|