1
|
Price AT, Knutson NC, Kim T, Green OL. Commissioning a secondary dose calculation software for a 0.35 T MR-linac. J Appl Clin Med Phys 2022; 23:e13452. [PMID: 35166011 PMCID: PMC8906210 DOI: 10.1002/acm2.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022] Open
Abstract
Secondary external dose calculations for a 0.35 T magnetic resonance image-guided radiation therapy (MRgRT) are needed within the radiation oncology community to follow safety standards set forth within the field. We evaluate the commercially available software, RadCalc, in its ability to accurately perform monitor unit dose calculations within a magnetic field. We also evaluate the potential effects of a 0.35 T magnetic field upon point dose calculations. Monitor unit calculations were evaluated with (wMag) and without (noMag) a magnetic field considerations in RadCalc for the ViewRay MRIdian. The magnetic field is indirectly accounted for by using asymmetric profiles for calculation. The introduction of double-stacked multi-leaf collimator leaves was also included in the monitor unit calculations and a single transmission value was determined. A suite of simple and complex geometries with a variety field arrangements were calculated for each method to demonstrate the effect of the 0.35 T magnetic field on monitor unit calculations. Finally, 25 patient-specific treatment plans were calculated using each method for comparison. All simple geometries calculated in RadCalc were within 2% of treatment planning system (TPS) values for both methods, except for a single noMag off-axis comparison. All complex muilt-leaf collimator (MLC) pattern calculations were within 5%. All complex phantom geometry calculations were within 5% except for a single field within a lung phantom at a distal point. For the patient calculations, the noMag method average percentage difference was 0.09 ± 2.5% and the wMag average percentage difference was 0.08 ± 2.5%. All results were within 5% for the wMag method. We performed monitor unit calculations for a 0.35 T MRgRT system using a commercially available secondary monitor unit dose calculation software and demonstrated minimal impact of the 0.35 T magnetic field on monitor unit dose calculations. This is the first investigation demonstrating successful calculations of dose using RadCalc in the low-field 0.35 T ViewRay MRIdian system.
Collapse
Affiliation(s)
- Alex T Price
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nels C Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Taeho Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Olga L Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Hao Y, Cai B, Green O, Knutson N, Yaddanapudi S, Zhao T, Rodriguez V, Schmidt M, Mutic S, Sun B. Technical Note: An alternative approach to verify 6FFF beam dosimetry for Ethos and MR Linac without using a 3D water tank. Med Phys 2021; 48:1533-1539. [PMID: 33547684 DOI: 10.1002/mp.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The current approach to Linac beam dosimetry verification is typically performed utilizing a three-dimensional (3D) water tank system. The 3D beam scanning process is cumbersome, labor intensive, error-prone, and costly. This is especially challenging for the new Ethos system and MR Linacs with a ring gantry. This work proposes an alternative approach to verify 6FFF beam dosimetry for Ethos, ViewRay MRIdian® Linac, and other Linacs with 6FFF beam quality using two-dimensional (2D) ion chamber arrays. METHODS Percentage depth dose (PDD) and profiles of an Ethos, an MRIdian® Linac, and several Linacs with 6FFF beams were measured at the nominal beam current. The beam energy was detuned by changing the bending magnet current on one TrueBeam. PDDs and profiles were measured for detuned beam energies. The peak shape of the 6FFF profile was defined by a "slope" parameter and unflatness. Correlations between peak slope and unflatness metrics vs PDDs were used to evaluate the sensitivity of beam energy to beam profile changes at different field sizes and depths. RESULTS Strong correlations were found between peak slope and PDDs for all Linacs with 6FFF beam. The R-squared values in the linear regression fitting between PDD and peak slope and unflatness were 0.99 and 0.84, respectively. Both profile slope and unflatness were proportional to PDD at the 10 cm depth and the peak slope was 4.3 times more sensitive than PDD. We have identified that measurements with a shallow depth are preferred to quantify the beam energy consistency. CONCLUSIONS Our work shows the feasibility of verifying 6FFF beam quality of Ethos, MR Linac, and other Linacs by defining a profile slope measured from 2D ionization chambers array devices. This new approach provides a simplified method for performing a routine beam quality check without using a 3D water tank system while maximizing cost effectiveness and efficiency.
Collapse
Affiliation(s)
- Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Bin Cai
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Olga Green
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Nels Knutson
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sridhar Yaddanapudi
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, LL-W Pomerantz Family Pavilion, Iowa City, IA, 52242-1089, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Vivian Rodriguez
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Matthew Schmidt
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|