1
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
2
|
Hatt M, Krizsan AK, Rahmim A, Bradshaw TJ, Costa PF, Forgacs A, Seifert R, Zwanenburg A, El Naqa I, Kinahan PE, Tixier F, Jha AK, Visvikis D. Joint EANM/SNMMI guideline on radiomics in nuclear medicine : Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council. Eur J Nucl Med Mol Imaging 2023; 50:352-375. [PMID: 36326868 PMCID: PMC9816255 DOI: 10.1007/s00259-022-06001-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics analyses for both hand-crafted and deep learning-based approaches. METHODS In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommendations for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acquisition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives. CONCLUSION Radiomics is a very quickly evolving field of research. The present guideline focused on established findings as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be updated once more studies and results have contributed to improved consensus regarding the application of deep learning methods for radiomics. Although methodological recommendations in the present document are valid for most medical image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, PET/MR, and quantitative SPECT.
Collapse
Affiliation(s)
- M Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | | | - A Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - T J Bradshaw
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - P F Costa
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - R Seifert
- Department of Nuclear Medicine, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
- Department of Nuclear Medicine, Münster University Hospital, Münster, Germany.
| | - A Zwanenburg
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - I El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, 33626, USA
| | - P E Kinahan
- Imaging Research Laboratory, PET/CT Physics, Department of Radiology, UW Medical Center, University of Washington, Seattle, WA, USA
| | - F Tixier
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - A K Jha
- McKelvey School of Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - D Visvikis
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
3
|
Stamoulou E, Spanakis C, Manikis GC, Karanasiou G, Grigoriadis G, Foukakis T, Tsiknakis M, Fotiadis DI, Marias K. Harmonization Strategies in Multicenter MRI-Based Radiomics. J Imaging 2022; 8:303. [PMID: 36354876 PMCID: PMC9695920 DOI: 10.3390/jimaging8110303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient information directly from images that are decoded into handcrafted features, comprising descriptors of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol acquisition depending on the scanner center). A variety of image and feature based harmonization methods has been developed to compensate for these effects; however, to the best of our knowledge, none of these techniques has been established as the most effective in the analysis pipeline so far. To this end, this review provides an overview of the challenges in optimizing radiomics analysis, and a concise summary of the most relevant harmonization techniques, aiming to provide a thorough guide to the radiomics harmonization process.
Collapse
Affiliation(s)
- Elisavet Stamoulou
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Constantinos Spanakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Georgia Karanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Grigoris Grigoriadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology—FORTH, University Campus of Ioannina, 451 15 Ioannina, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| |
Collapse
|
4
|
Saad M, He S, Thorstad W, Gay H, Barnett D, Zhao Y, Ruan S, Wang X, Li H. Learning-based Cancer Treatment Outcome Prognosis using Multimodal Biomarkers. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:231-244. [PMID: 35520102 PMCID: PMC9066560 DOI: 10.1109/trpms.2021.3104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Predicting early in treatment whether a tumor is likely to be responsive is a difficult yet important task to support clinical decision-making. Studies have shown that multimodal biomarkers could provide complementary information and lead to more accurate treatment outcome prognosis than unimodal biomarkers. However, the prognosis accuracy could be affected by multimodal data heterogeneity and incompleteness. The small-sized and imbalance datasets also bring additional challenges for training a designed prognosis model. In this study, a modular framework employing multimodal biomarkers for cancer treatment outcome prediction was proposed. It includes four modules of synthetic data generation, deep feature extraction, multimodal feature fusion, and classification to address the challenges described above. The feasibility and advantages of the designed framework were demonstrated through an example study, in which the goal was to stratify oropharyngeal squamous cell carcinoma (OPSCC) patients with low- and high-risks of treatment failures by use of positron emission tomography (PET) image data and microRNA (miRNA) biomarkers. The superior prognosis performance and the comparison with other methods demonstrated the efficiency of the proposed framework and its ability of enabling seamless integration, validation and comparison of various algorithms in each module of the framework. The limitation and future work was discussed as well.
Collapse
Affiliation(s)
- Maliazurina Saad
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. She is now with the MD Anderson Cancer Center, Houston, TX, USA
| | - Shenghua He
- Department of Computer Science and Engineering, Washington University, Saint louis, MO, USA
| | - Wade Thorstad
- Department of Radiation Oncology, Washington University School of Medicine, Saint louis, MO, USA
| | - Hiram Gay
- Department of Radiation Oncology, Washington University School of Medicine, Saint louis, MO, USA
| | - Daniel Barnett
- Carle Cancer Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Yujie Zhao
- Mao Clinic at Florida, Jacksonville, FL, USA
| | - Su Ruan
- Laboratoire LITIS (EA 4108), Equipe Quantif, University of Rouen, France
| | - Xiaowei Wang
- Department of Pharmacology and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hua Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Cancer Center at Illinois, and Carle Foundation Hospital, Urbana, IL, USA
| |
Collapse
|