1
|
Guo Y, Liu Z, Feng S, Cai H, Zhang Q. Clinical Viability of an Active Spot Scanning Beam Delivery System With a Newly Developed Carbon-Ion Treatment Planning System. Adv Radiat Oncol 2024; 9:101503. [PMID: 38883996 PMCID: PMC11177064 DOI: 10.1016/j.adro.2024.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/19/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Although active spot scanning irradiation technique is theoretically superior to passive-scattered broad beam irradiation with respect to normal tissue sparing, corroborations of the clinical benefit of carbon-ion spot scanning have remained scarce. This study aims to investigate the feasibility and clinical implementation of an active spot scanning beam calculation algorithm in a homemade carbon-ion treatment planning system by comparing it with a conventional passive uniform scanning technique. Methods and Materials Carbon-ion plans were initially formulated using spot/uniform scanning methods in 22 participants enrolled in a prospective observational clinical trial. Subsequently, 2 additional plans were designed, resulting in 3 carbon-ion plans for each participant: uniform and spot scanning with miniridge filters of 2 mm and 4 mm, respectively. Results The findings revealed no significant differences in dose homogeneity; however, significant differences in dose conformity were found between the active and passive scanning plans. For dose drop-off outside the target volume, the average gradient index values were 1.94 (95% CI, 1.79%-2.09%), 1.87 (95% CI, 1.73%-2.01%), and 3.20 (95% CI, 2.80%-3.61%) for the miniridge filters of 2 mm and 4 mm, and uniform scanning plans, respectively. The pretreatment tumor volume was 124.7 cm3 (range, 54.2-234 cm3), and the average shrinkage observed was 38.4% (95% CI, 17.6%-59.4%). Seven participants experienced grade 1 acute toxicity, and 4 experienced grade 2 acute toxicity. However, none of the patients developed grade 3 acute toxicity. Conclusions Increasing evidence suggests that potential clinical advantages of spot scanning delivery underlie its technical characteristics. As one among the few institutions currently using carbon-ion radiation therapy, the investigation also provides promising safety and efficacy outcomes from the initial groups of treated participants, thereby contributing to the established clinical evidence supporting the effectiveness and superiority of carbon-ion therapy.
Collapse
Affiliation(s)
- Yixiao Guo
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, P.R. China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R. China
| | - Shifang Feng
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, P.R. China
| | - Hongyi Cai
- Department of Radiation Oncology, Gansu Provincial Hospital, Lanzhou, P.R. China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R. China
| |
Collapse
|
2
|
Hrinivich WT, Li H, Tran A, Acharya S, Ladra MM, Sheikh K. Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation. Cancers (Basel) 2023; 15:cancers15112882. [PMID: 37296845 DOI: 10.3390/cancers15112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Purpose: To report our design, manufacturing, commissioning and initial clinical experience with a table-mounted range shifter board (RSB) intended to replace the machine-mounted range shifter (MRS) in a synchrotron-based pencil beam scanning (PBS) system to reduce penumbra and normal tissue dose for image-guided pediatric craniospinal irradiation (CSI). Methods: A custom RSB was designed and manufactured from a 3.5 cm thick slab of polymethyl methacrylate (PMMA) to be placed directly under patients, on top of our existing couch top. The relative linear stopping power (RLSP) of the RSB was measured using a multi-layer ionization chamber, and output constancy was measured using an ion chamber. End-to-end tests were performed using the MRS and RSB approaches using an anthropomorphic phantom and radiochromic film measurements. Cone beam CT (CBCT) and 2D planar kV X-ray image quality were compared with and without the RSB present using image quality phantoms. CSI plans were produced using MRS and RSB approaches for two retrospective pediatric patients, and the resultant normal tissue doses were compared. Results: The RLSP of the RSB was found to be 1.163 and provided computed penumbra of 6.9 mm in the phantom compared to 11.8 mm using the MRS. Phantom measurements using the RSB demonstrated errors in output constancy, range, and penumbra of 0.3%, -0.8%, and 0.6 mm, respectively. The RSB reduced mean kidney and lung dose compared to the MRS by 57.7% and 46.3%, respectively. The RSB decreased mean CBCT image intensities by 86.8 HU but did not significantly impact CBCT or kV spatial resolution providing acceptable image quality for patient setup. Conclusions: A custom RSB for pediatric proton CSI was designed, manufactured, modeled in our TPS, and found to significantly reduce lateral proton beam penumbra compared to a standard MRS while maintaining CBCT and kV image-quality and is in routine use at our center.
Collapse
Affiliation(s)
- William T Hrinivich
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Anh Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Matthew M Ladra
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, DC 20016, USA
| |
Collapse
|
3
|
Kang M, Choi JI, Souris K, Zhou J, Yu G, Shepherd AF, Ohri N, Lazarev S, Lin L, Lin H, Simone CB. Advances in treatment planning and management for the safety and accuracy of lung stereotactic body radiation therapy using proton pencil beam scanning: Simulation, planning, quality assurance, and delivery recommendations. JOURNAL OF RADIOSURGERY AND SBRT 2023; 9:53-62. [PMID: 38029008 PMCID: PMC10681141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 12/01/2023]
Abstract
This study presents the clinical experiences of the New York Proton Center in employing proton pencil beam scanning (PBS) for the treatment of lung stereotactic body radiation therapy. It encompasses a comprehensive examination of multiple facets, including patient simulation, delineation of target volumes and organs at risk, treatment planning, plan evaluation, quality assurance, and motion management strategies. By sharing the approaches of the New York Proton Center and providing recommendations across simulation, treatment planning, and treatment delivery, it is anticipated that the valuable experience will be provided to a broader proton therapy community, serving as a useful reference for future clinical practice and research endeavors in the field of stereotactic body proton therapy for lung tumors.
Collapse
Affiliation(s)
| | - J. Isabelle Choi
- New York Proton Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York NY, USA
| | | | - Jun Zhou
- Emory University, Department of Radiation Oncology, Atlanta, GA, USA|
| | - Gang Yu
- New York Proton Center, New York, NY, USA
| | - Annemarie F. Shepherd
- New York Proton Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York NY, USA
| | - Nitin Ohri
- New York Proton Center, New York, NY, USA
- Montefiore Medical Center, Department of Radiation Oncology, Bronx, NY, USA
| | - Stanislav Lazarev
- New York Proton Center, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, New York, NY, USA
| | - Liyong Lin
- Emory University, Department of Radiation Oncology, Atlanta, GA, USA|
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York NY, USA
- Montefiore Medical Center, Department of Radiation Oncology, Bronx, NY, USA
| | - Charles B. Simone
- New York Proton Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York NY, USA
| |
Collapse
|
4
|
Wei S, Lin H, Huang S, Shi C, Xiong W, Zhai H, Hu L, Yu G, Press RH, Hasan S, Chhabra AM, Choi JI, Simone CB, Kang M. Dose rate and dose robustness for proton transmission FLASH-RT treatment in lung cancer. Front Oncol 2022; 12:970602. [PMID: 36059710 PMCID: PMC9435957 DOI: 10.3389/fonc.2022.970602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes To evaluate the plan quality and robustness of both dose and dose rate of proton pencil beam scanning (PBS) transmission FLASH delivery in lung cancer treatment. Methods and materials An in-house FLASH planning platform was used to optimize 10 lung cancer patients previously consecutively treated with proton stereotactic body radiation therapy (SBRT) to receive 3 and 5 transmission beams (Trx-3fds and Trx-5fds, respectively) to 34 Gy in a single fraction. Perturbation scenarios (n=12) for setup and range uncertainties (5 mm and 3.5%) were introduced, and dose-volume histogram and dose-rate-volume histogram bands were generated. Conventional proton SBRT clinical plans were used as a reference. RTOG 0915 dose metrics and 40 Gy/s dose rate coverage (V40Gy/s) were used to assess the dose and dose rate robustness. Results Trx-5fds yields a comparable iCTV D2% of 105.3%, whereas Trx-3fds resulted in inferior D2% of 111.9% to the clinical SBRT plans with D2% of 105.6% (p<0.05). Both Trx-5fds and Trx-3fds plans had slightly worse dose metrics to organs at risk than SBRT plans. Trx-5fds achieved superior dosimetry robustness for iCTV, esophagus, and spinal cord doses than both Trx-3fds and conventional SBRT plans. There was no significant difference in dose rate robustness for V40Gy/s coverage between Trx-3fds and Trx-5fds. Dose rate distribution has similar distributions to the dose when perturbation exists. Conclusion Transmission plans yield overall modestly inferior plan quality compared to the conventional proton SBRT plans but provide improved robustness and the potential for a toxicity-sparing FLASH effect. By using more beams (5- versus 3-field), both dose and dose rate robustness for transmission plans can be achieved.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY, United States
| | - Haibo Lin
- New York Proton Center, New York, NY, United States
| | - Sheng Huang
- New York Proton Center, New York, NY, United States
| | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA, United States
| | - Weijun Xiong
- New York Proton Center, New York, NY, United States
| | - Huifang Zhai
- New York Proton Center, New York, NY, United States
| | - Lei Hu
- New York Proton Center, New York, NY, United States
| | - Gang Yu
- New York Proton Center, New York, NY, United States
| | | | | | | | | | | | - Minglei Kang
- New York Proton Center, New York, NY, United States
- *Correspondence: Minglei Kang,
| |
Collapse
|
5
|
Wei S, Lin H, Shi C, Xiong W, Chen CC, Huang S, Press RH, Hasan S, Chhabra AM, Choi JI, Simone CB, Kang M. Use of single-energy proton pencil beam scanning Bragg peak for intensity-modulated proton therapy FLASH treatment planning in liver hypofractionated radiation therapy. Med Phys 2022; 49:6560-6574. [PMID: 35929404 DOI: 10.1002/mp.15894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The transmission proton FLASH technique delivers high doses to the normal tissue distal to the target, which is less conformal compared to the Bragg peak technique. To investigate FLASH RT planning using single-energy Bragg peak beams with a similar beam arrangement as clinical intensity-modulated proton therapy (IMPT) in liver stereotactic body radiation therapy (SBRT) and to characterize the plan quality, dose sparing of organs-at-risk (OARs), and FLASH dose rate percentage. MATERIALS AND METHODS An in-house platform was developed to enable inverse IMPT-FLASH planning using single-energy Bragg peaks. A universal range shifter and range compensators were utilized to effectively align the Bragg peak to the distal edge of the target. Two different minimum MU settings of 400 and 800 MU/spot (Bragg-400MU and Bragg-800MU) plans were investigated on 10 consecutive hepatocellular carcinoma patients previously treated by IMPT-SBRT to evaluate the FLASH dose and dose rate coverage for OARs. The IMPT-FLASH using single-energy Bragg peaks delivered 50 Gy in 5 fractions with similar or identical beam arrangement to the clinical IMPT-SBRT plans. NRG GI003 dose constraint metrics were used. Three dose rate calculation methods, including average dose rate (ADR), dose threshold dose rate (DTDR), and dose-averaged dose rate (DADR), were all studied. RESULTS The novel spot map optimization can fulfill the inverse planning using single-energy Bragg peaks. All the Bragg peak FLASH plans achieved similar results for the liver-GTV Dmean and heart D0.5cc , compared to SBRT-IMPT. The Bragg-800MU plans resulted in 18.3% higher CTV D2cc compared with SBRT (p < 0.05), and no significant difference was found between Bragg-400MU and SBRT plans. For the CTV Dmax , SBRT plans resulted in 10.3% (p<0.01) less than Bragg-400MU plans and 16.6% (p<0.01) less than Bragg-800MU plans. The Bragg-800MU plans generally achieved higher ADR, DADR, and DTDR dose rates than Bragg-400MU plans, and DADR mostly led to the highest V40Gy/s compared to other dose rate calculation methods, whereas ADR led to the lowest. The lower dose rate portions in certain OARs are related to the lower dose deposited due to the farther distances from targets, especially in the penumbra of the beams. CONCLUSION Single-energy Bragg peak IMPT-FLASH plans eliminate the exit dose in normal tissues, maintaining comparable dose metrics to the conventional IMPT-SBRT plans while achieving a sufficient FLASH dose rate for liver cancers. This study demonstrates the feasibility of and sufficiently high dose rate when applying Bragg peak FLASH treatment for liver cancer hypofractionated FLASH therapy. The advancement of this novel method has the potential to optimize treatment for liver cancer patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY, USA
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Treatment of ocular tumors through a novel applicator on a conventional proton pencil beam scanning beamline. Sci Rep 2022; 12:4648. [PMID: 35301371 PMCID: PMC8931109 DOI: 10.1038/s41598-022-08440-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Treatment of ocular tumors on dedicated scattering-based proton therapy systems is standard afforded due to sharp lateral and distal penumbras. However, most newer proton therapy centers provide pencil beam scanning treatments. In this paper, we present a pencil beam scanning (PBS)-based ocular treatment solution. The design, commissioning, and validation of an applicator mount for a conventional PBS snout to allow for ocular treatments are given. In contrast to scattering techniques, PBS-based ocular therapy allows for inverse planning, providing planners with additional flexibility to shape the radiation field,
potentially sparing healthy tissues. PBS enables the use of commercial Monte Carlo algorithms resulting in accurate dose calculations in the presence of heterogeneities and fiducials. The validation consisted of small field dosimetry measurements of point doses, depth doses, and lateral profiles relevant to ocular therapy. A comparison of beam properties achieved through the applicator against published literature is presented. We successfully showed the feasibility of PBS-based ocular treatments.
Collapse
|
7
|
Lin H, Shi C, Huang S, Shen J, Kang M, Chen Q, Zhai H, McDonough J, Tochner Z, Deville C, Simone CB, Both S. Applications of various range shifters for proton pencil beam scanning radiotherapy. Radiat Oncol 2021; 16:146. [PMID: 34362396 PMCID: PMC8344212 DOI: 10.1186/s13014-021-01873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background A range pull-back device, such as a machine-related range shifter (MRS) or a universal patient-related range shifter (UPRS), is needed in pencil beam scanning technique to treat shallow tumors. Methods Three UPRS made by QFix (Avondale, PA, USA) allow treating targets across the body: U-shaped bolus (UB), anterior lateral bolus (ALB), and couch top bolus. Head-and-neck (HN) patients who used the UPRS were tested. The in-air spot sizes were measured and compared in this study at air gaps: 6 cm, 16 cm, and 26 cm. Measurements were performed in a solid water phantom using a single-field optimization pencil beam scanning field with the ALB placed at 0, 10, and 20 cm air gaps. The two-dimensional dose maps at the middle of the spread-out Bragg peak were measured using ion chamber array MatriXX PT (IBA-Dosimetry, Schwarzenbruck, Germany) located at isocenter and compared with the treatment planning system. Results A UPRS can be consistently placed close to the patient and maintains a relatively small spot size resulting in improved dose distributions. However, when a UPRS is non-removable (e.g. thick couch top), the quality of volumetric imaging is degraded due to their high Z material construction, hindering the value of Image-Guided Radiation Therapy (IGRT). Limitations of using UPRS with small air gaps include reduced couch weight limit, potential collision with patient or immobilization devices, and challenges using non-coplanar fields with certain UPRS. Our experience showed the combination of a U-shaped bolus exclusively for an HN target and an MRS as the complimentary device for head-and-neck targets as well as for all other treatment sites may be ideal to preserve the dosimetric advantages of pencil beam scanning proton treatments across the body. Conclusion We have described how to implement UPRS and MRS for various clinical indications using the PBS technique, and comprehensively reviewed the advantage and disadvantages of UPRS and MRS. We recommend the removable UB only to be employed for the brain and HN treatments while an automated MRS is used for all proton beams that require RS but not convenient or feasible to use UB.
Collapse
Affiliation(s)
- Haibo Lin
- New York Proton Center, New York, 10035, USA.
| | - Chengyu Shi
- New York Proton Center, New York, 10035, USA
| | - Sheng Huang
- New York Proton Center, New York, 10035, USA
| | | | | | - Qing Chen
- New York Proton Center, New York, 10035, USA
| | | | - James McDonough
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zelig Tochner
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, 9713 GZ, Netherlands
| |
Collapse
|