1
|
Chan RCK, Ng CKC, Hung RHM, Li YTY, Tam YTY, Wong BYL, Yu JCK, Leung VWS. Comparative Study of Plan Robustness for Breast Radiotherapy: Volumetric Modulated Arc Therapy Plans with Robust Optimization versus Manual Flash Approach. Diagnostics (Basel) 2023; 13:3395. [PMID: 37998531 PMCID: PMC10670672 DOI: 10.3390/diagnostics13223395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
A previous study investigated robustness of manual flash (MF) and robust optimized (RO) volumetric modulated arc therapy plans for breast radiotherapy based on five patients in 2020 and indicated that the RO was more robust than the MF, although the MF is still current standard practice. The purpose of this study was to compare their plan robustness in terms of dose variation to clinical target volume (CTV) and organs at risk (OARs) based on a larger sample size. This was a retrospective study involving 34 female patients. Their plan robustness was evaluated based on measured volume/dose difference between nominal and worst scenarios (ΔV/ΔD) for each CTV and OARs parameter, with a smaller difference representing greater robustness. Paired sample t-test was used to compare their robustness values. All parameters (except CTV ΔD98%) of the RO approach had smaller ΔV/ΔD values than those of the MF. Also, the RO approach had statistically significantly smaller ΔV/ΔD values (p < 0.001-0.012) for all CTV parameters except the CTV ΔV95% and ΔD98% and heart ΔDmean. This study's results confirm that the RO approach was more robust than the MF in general. Although both techniques were able to generate clinically acceptable plans for breast radiotherapy, the RO could potentially improve workflow efficiency due to its simpler planning process.
Collapse
Affiliation(s)
- Ray C. K. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rico H. M. Hung
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China;
| | - Yoyo T. Y. Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Yuki T. Y. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Blossom Y. L. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Jacky C. K. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| |
Collapse
|
2
|
Mørkeset ST, Lervåg C, Lund JÅ, Jensen C. Clinical experience of volumetric-modulated flattening filter free stereotactic body radiation therapy of lesions in the lung with deep inspiration breath-hold. J Appl Clin Med Phys 2022; 23:e13733. [PMID: 35867387 PMCID: PMC9512343 DOI: 10.1002/acm2.13733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022] Open
Abstract
This clinical study aimed to evaluate lung cancer patients' ability to perform deep inspiration breath-hold (DIBH) during CT simulation and throughout the treatment course of stereotactic body radiation therapy (SBRT). In addition, target sizes, organ at risk (OAR) sizes, and doses to the respective volumes in filter-free volumetric-modulated arc therapy plans performed under free-breathing (FB) and DIBH conditions were evaluated. Twenty-one patients with peripheral lesions were included, of which 13 were eligible for SBRT. All patients underwent training for breath-hold during CT, and if they complied with the requirements, two CT scans were obtained: CT scan in DIBH and a four-dimensional CT scan in FB. The treatment plans in FB and DIBH were generated, and the dose parameters and volume sizes were compared. The endpoints for evaluation were patient compliance, target dose coverage, and doses to the OARs. This clinical study showed high patient DIBH compliance during both CT simulation and treatment for patients with lung cancer. A significant reduction in target volumes was achieved with SBRT in DIBH, in addition to significantly decreased doses to the heart, chest wall, and lungs. DIBH in SBRT of lung lesions is feasible, and a routine to manage intra-fractional deviation should be established upon implementation.
Collapse
Affiliation(s)
- Siri T Mørkeset
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Christoffer Lervåg
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Jo-Åsmund Lund
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway.,Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| | - Christer Jensen
- Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway.,Department of Medicine and Healthcare, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| |
Collapse
|
3
|
External Beam Accelerated Partial Breast Irradiation in Early Breast Cancer and the Risk for Radiogenic Pneumonitis. Cancers (Basel) 2022; 14:cancers14143520. [PMID: 35884579 PMCID: PMC9316541 DOI: 10.3390/cancers14143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
In order to evaluate the risk for radiation-associated symptomatic pneumonitis in a prospective external beam accelerated partial breast irradiation (APBI) trial, between 2011 and 2021, 170 patients with early stage breast cancer were enclosed in the trial. Patients were eligible for study participation if they had a histologically confirmed breast cancer or an exclusive ductal carcinoma in situ (DCIS), a tumor size ≤3 cm, free safety margins ≥2 mm, no involved axillary lymph nodes, tumor bed clips, and were ≥50 years old. Patients received APBI with 38 Gy with 10 fractions in 10 consecutive working days. The trial was registered at the German Clinical Trials Registry, DRKS-ID: DRKS00004417. Median follow-up was 56 (1−129) months. Ipsilateral lung MLD, V20, and V30 were 4.3 ± 1.4 Gy, 3.0 ± 2.0%, and 1.0 ± 1.0%, respectively. Radiogenic pneumonitis grade 2 appeared in 1/170 (0.6%) patients two months after radiotherapy. Ipsilateral MLD, V20, and V30 were 6.1 Gy, 7, and 3% in this patient. Additionally, individual radiosensitivity was increased in this specific patient. Compared to WBI, APBI leads to lower lung doses. Using APBI, the risk of symptomatic radiogenic pneumonitis is very low and may be limited, with an ipsilateral V20 < 3% to very exceptional cases associated with innate risk factors with an increased radiation susceptibility.
Collapse
|
4
|
Chen CP, Lin CY, Kuo CC, Chen TH, Lin SC, Tseng KH, Cheng HW, Chao HL, Yen SH, Lin RY, Feng CJ, Lu LS, Chiou JF, Hsu SM. Skin Surface Dose for Whole Breast Radiotherapy Using Personalized Breast Holder: Comparison with Various Radiotherapy Techniques and Clinical Experiences. Cancers (Basel) 2022; 14:cancers14133205. [PMID: 35804977 PMCID: PMC9264904 DOI: 10.3390/cancers14133205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: Breast immobilization with personalized breast holder (PERSBRA) is a promising approach for normal organ protection during whole breast radiotherapy. The aim of this study is to evaluate the skin surface dose for breast radiotherapy with PERSBRA using different radiotherapy techniques. Materials and methods: We designed PERSBRA with three different mesh sizes (large, fine and solid) and applied them on an anthropomorphic(Rando) phantom. Treatment planning was generated using hybrid, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques to deliver a prescribed dose of 5000 cGy in 25 fractions accordingly. Dose measurement with EBT3 film and TLD were taken on Rando phantom without PERSBRA, large mesh, fine mesh and solid PERSBRA for (a) tumor doses, (b) surface doses for medial field and lateral field irradiation undergoing hybrid, IMRT, VMAT techniques. Results: The tumor dose deviation was less than five percent between the measured doses of the EBT3 film and the TLD among the different techniques. The application of a PERSBRA was associated with a higher dose of the skin surface. A large mesh size of PERSBRA was associated with a lower surface dose. The findings were consistent among hybrid, IMRT, or VMAT techniques. Conclusions: Breast immobilization with PERSBRA can reduce heart toxicity but leads to a build-up of skin surface doses, which can be improved with a larger mesh design for common radiotherapy techniques.
Collapse
Affiliation(s)
- Chiu-Ping Chen
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (C.-P.C.); (C.-Y.L.); (C.-C.K.); (H.-L.C.); (S.-H.Y.)
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.L.); (C.-J.F.)
| | - Chi-Yeh Lin
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (C.-P.C.); (C.-Y.L.); (C.-C.K.); (H.-L.C.); (S.-H.Y.)
| | - Chia-Chun Kuo
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (C.-P.C.); (C.-Y.L.); (C.-C.K.); (H.-L.C.); (S.-H.Y.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan; (T.-H.C.); (L.-S.L.)
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Tung-Ho Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan; (T.-H.C.); (L.-S.L.)
| | - Shao-Chen Lin
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Kuo-Hsiung Tseng
- Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Hao-Wen Cheng
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsing-Lung Chao
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (C.-P.C.); (C.-Y.L.); (C.-C.K.); (H.-L.C.); (S.-H.Y.)
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Sang-Hue Yen
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (C.-P.C.); (C.-Y.L.); (C.-C.K.); (H.-L.C.); (S.-H.Y.)
| | - Ruo-Yu Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.L.); (C.-J.F.)
| | - Chen-Ju Feng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.L.); (C.-J.F.)
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan; (T.-H.C.); (L.-S.L.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan; (T.-H.C.); (L.-S.L.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (J.-F.C.); (S.-M.H.)
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.L.); (C.-J.F.)
- Correspondence: (J.-F.C.); (S.-M.H.)
| |
Collapse
|
5
|
TROG 14.04: Multicentre Study of Feasibility and Impact on Anxiety of DIBH in Breast Cancer Patients. Clin Oncol (R Coll Radiol) 2022; 34:e410-e419. [PMID: 35717318 DOI: 10.1016/j.clon.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
AIMS The aim of TROG 14.04 was to assess the feasibility of deep inspiration breath hold (DIBH) and its impact on radiation dose to the heart in patients with left-sided breast cancer undergoing radiotherapy. Secondary end points pertained to patient anxiety and cost of delivering a DIBH programme. MATERIALS AND METHODS The study comprised two groups - left-sided breast cancer patients engaging DIBH and right-sided breast cancer patients using free breathing through radiotherapy. The primary end point was the feasibility of DIBH, defined as left-sided breast cancer patients' ability to breath hold for 15 s, decrease in heart dose in DIBH compared with the free breathing treatment plan and reproducibility of radiotherapy delivery using mid-lung distance (MLD) assessed on electronic portal imaging as the surrogate. The time required for treatment delivery, patient-reported outcomes and resource requirement were compared between the groups. RESULTS Between February and November 2018, 32 left-sided and 30 right-sided breast cancer patients from six radiotherapy centres were enrolled. Two left-sided breast cancer patients did not undergo DIBH (one treated in free breathing as per investigator choice, one withdrawn). The mean heart dose was reduced from 2.8 Gy (free breathing) to 1.5 Gy (DIBH). Set-up reproducibility in the first week of treatment assessed by MLD was 1.88 ± 1.04 mm (average ± 1 standard deviation) for DIBH and 1.59 ± 0.93 mm for free breathing patients. Using a reproducibility cut-off for MLD of 2 mm (1 standard deviation) as per study protocol, DIBH was feasible for 67% of DIBH patients. Radiotherapy delivery using DIBH took about 2 min longer than for free breathing. Anxiety was not significantly different in DIBH patients and decreased over the course of treatment in both groups. CONCLUSION Although DIBH was shown to require about 2 min longer per treatment slot, it has the potential to reduce heart dose in left-sided breast cancer patients by nearly a half, provided careful assessment of breath hold reproducibility is carried out.
Collapse
|