1
|
Richardson SL, Bosch WR, Mayo CS, McNutt TR, Moran JM, Popple RA, Xiao Y, Covington EL. Order From Chaos: The Benefits of Standardized Nomenclature in Radiation Oncology. Pract Radiat Oncol 2024; 14:582-589. [PMID: 38636586 DOI: 10.1016/j.prro.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Although standardization has been shown to improve patient safety and improve the efficiency of workflows, implementation of standards can take considerable effort and requires the engagement of all clinical stakeholders. Engaging team members includes increasing awareness of the proposed benefit of the standard, a clear implementation plan, monitoring for improvements, and open communication to support successful implementation. The benefits of standardization often focus on large institutions to improve research endeavors, yet all clinics can benefit from standardization to increase quality and implement more efficient or automated workflow. The benefits of nomenclature standardization for all team members and institution sizes, including success stories, are discussed with practical implementation guides to facilitate the adoption of standardized nomenclature in radiation oncology.
Collapse
Affiliation(s)
- Susan L Richardson
- Department of Radiation Oncology, Swedish Medical Center-Tumor Institute, Seattle, Washington.
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, Saint Louis, Missouri
| | - Charles S Mayo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Todd R McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
2
|
Lempart M, Scherman J, Nilsson MP, Jamtheim Gustafsson C. Deep learning-based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy. J Appl Clin Med Phys 2023; 24:e14022. [PMID: 37177830 PMCID: PMC10476996 DOI: 10.1002/acm2.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Deep learning (DL) models for radiation therapy (RT) image segmentation require accurately annotated training data. Multiple organ delineation guidelines exist; however, information on the used guideline is not provided with the delineation. Extraction of training data with coherent guidelines can therefore be challenging. We present a supervised classification method for pelvis structure delineations where bowel cavity, femoral heads, bladder, and rectum data, with two guidelines, were classified. The impact on DL-based segmentation quality using mixed guideline training data was also demonstrated. Bowel cavity was manually delineated on CT images for anal cancer patients (n = 170) according to guidelines Devisetty and RTOG. The DL segmentation quality from using training data with coherent or mixed guidelines was investigated. A supervised 3D squeeze-and-excite SENet-154 model was trained to classify two bowel cavity delineation guidelines. In addition, a pelvis CT dataset with manual delineations from prostate cancer patients (n = 1854) was used where data with an alternative guideline for femoral heads, rectum, and bladder were generated using commercial software. The model was evaluated on internal (n = 200) and external test data (n = 99). By using mixed, compared to coherent, delineation guideline training data mean DICE score decreased 3% units, mean Hausdorff distance (95%) increased 5 mm and mean surface distance (MSD) increased 1 mm. The classification of bowel cavity test data achieved 99.8% unweighted classification accuracy, 99.9% macro average precision, 97.2% macro average recall, and 98.5% macro average F1. Corresponding metrics for the pelvis internal test data were all 99% or above and for the external pelvis test data they were 96.3%, 96.6%, 93.3%, and 94.6%. Impaired segmentation performance was observed for training data with mixed guidelines. The DL delineation classification models achieved excellent results on internal and external test data. This can facilitate automated guideline-specific data extraction while avoiding the need for consistent and correct structure labels.
Collapse
Affiliation(s)
- Michael Lempart
- Radiation Physics, Department of HematologyOncology, and Radiation PhysicsSkåne University HospitalLundSweden
- Department of Translational MedicineMedical Radiation PhysicsLund UniversityMalmöSweden
| | - Jonas Scherman
- Radiation Physics, Department of HematologyOncology, and Radiation PhysicsSkåne University HospitalLundSweden
| | - Martin P. Nilsson
- Department of HematologyOncology, and Radiation PhysicsSkåne University HospitalLundSweden
| | - Christian Jamtheim Gustafsson
- Radiation Physics, Department of HematologyOncology, and Radiation PhysicsSkåne University HospitalLundSweden
- Department of Translational MedicineMedical Radiation PhysicsLund UniversityMalmöSweden
| |
Collapse
|
3
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
4
|
Chen A, Chen F, Li X, Zhang Y, Chen L, Chen L, Zhu J. A Feasibility Study of Deep Learning-Based Auto-Segmentation Directly Used in VMAT Planning Design and Optimization for Cervical Cancer. Front Oncol 2022; 12:908903. [PMID: 35719942 PMCID: PMC9198405 DOI: 10.3389/fonc.2022.908903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To investigate the dosimetric impact on target volumes and organs at risk (OARs) when unmodified auto-segmented OAR contours are directly used in the design of treatment plans. Materials and Methods A total of 127 patients with cervical cancer were collected for retrospective analysis, including 105 patients in the training set and 22 patients in the testing set. The 3D U-net architecture was used for model training and auto-segmentation of nine types of organs at risk. The auto-segmented and manually segmented organ contours were used for treatment plan optimization to obtain the AS-VMAT (automatic segmentations VMAT) plan and the MS-VMAT (manual segmentations VMAT) plan, respectively. Geometric accuracy between the manual and predicted contours were evaluated using the Dice similarity coefficient (DSC), mean distance-to-agreement (MDA), and Hausdorff distance (HD). The dose volume histogram (DVH) and the gamma passing rate were used to identify the dose differences between the AS-VMAT plan and the MS-VMAT plan. Results Average DSC, MDA and HD95 across all OARs were 0.82–0.96, 0.45–3.21 mm, and 2.30–17.31 mm on the testing set, respectively. The D99% in the rectum and the Dmean in the spinal cord were 6.04 Gy (P = 0.037) and 0.54 Gy (P = 0.026) higher, respectively, in the AS-VMAT plans than in the MS-VMAT plans. The V20, V30, and V40 in the rectum increased by 1.35% (P = 0.027), 1.73% (P = 0.021), and 1.96% (P = 0.008), respectively, whereas the V10 in the spinal cord increased by 1.93% (P = 0.011). The differences in other dosimetry parameters were not statistically significant. The gamma passing rates in the clinical target volume (CTV) were 92.72% and 98.77%, respectively, using the 2%/2 mm and 3%/3 mm criteria, which satisfied the clinical requirements. Conclusions The dose distributions of target volumes were unaffected when auto-segmented organ contours were used in the design of treatment plans, whereas the impact of automated segmentation on the doses to OARs was complicated. We suggest that the auto-segmented contours of tissues in close proximity to the target volume need to be carefully checked and corrected when necessary.
Collapse
Affiliation(s)
- Along Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fei Chen
- School of Biomedical Engineering, Guangzhou Xinhua University, Guangzhou, China
| | - Xiaofang Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yazhi Zhang
- Department of Oncology and Hematology, The Six People’s Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou, China
| | - Li Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lixin Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Lixin Chen, ; Jinhan Zhu,
| | - Jinhan Zhu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Lixin Chen, ; Jinhan Zhu,
| |
Collapse
|
5
|
Jamtheim Gustafsson C, Lempart M, Swärd J, Persson E, Nyholm T, Thellenberg Karlsson C, Scherman J. Deep learning-based classification and structure name standardization for organ at risk and target delineations in prostate cancer radiotherapy. J Appl Clin Med Phys 2021; 22:51-63. [PMID: 34623738 PMCID: PMC8664152 DOI: 10.1002/acm2.13446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022] Open
Abstract
Radiotherapy (RT) datasets can suffer from variations in annotation of organ at risk (OAR) and target structures. Annotation standards exist, but their description for prostate targets is limited. This restricts the use of such data for supervised machine learning purposes as it requires properly annotated data. The aim of this work was to develop a modality independent deep learning (DL) model for automatic classification and annotation of prostate RT DICOM structures. Delineated prostate organs at risk (OAR), support- and target structures (gross tumor volume [GTV]/clinical target volume [CTV]/planning target volume [PTV]), along with or without separate vesicles and/or lymph nodes, were extracted as binary masks from 1854 patients. An image modality independent 2D InceptionResNetV2 classification network was trained with varying amounts of training data using four image input channels. Channel 1-3 consisted of orthogonal 2D projections from each individual binary structure. The fourth channel contained a summation of the other available binary structure masks. Structure classification performance was assessed in independent CT (n = 200 pat) and magnetic resonance imaging (MRI) (n = 40 pat) test datasets and an external CT (n = 99 pat) dataset from another clinic. A weighted classification accuracy of 99.4% was achieved during training. The unweighted classification accuracy and the weighted average F1 score among different structures in the CT test dataset were 98.8% and 98.4% and 98.6% and 98.5% for the MRI test dataset, respectively. The external CT dataset yielded the corresponding results 98.4% and 98.7% when analyzed for trained structures only, and results from the full dataset yielded 79.6% and 75.2%. Most misclassifications in the external CT dataset occurred due to multiple CTVs and PTVs being fused together, which was not included in the training data. Our proposed DL-based method for automated renaming and standardization of prostate radiotherapy annotations shows great potential. Clinic specific contouring standards however need to be represented in the training data for successful use. Source code is available at https://github.com/jamtheim/DicomRTStructRenamerPublic.
Collapse
Affiliation(s)
- Christian Jamtheim Gustafsson
- Department of Hematology Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Translational Sciences, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Michael Lempart
- Department of Hematology Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Translational Sciences, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Johan Swärd
- Centre for Mathematical Sciences, Mathematical Statistics, Lund University, Lund, Sweden
| | - Emilia Persson
- Department of Hematology Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Department of Translational Sciences, Medical Radiation Physics, Lund University, Malmö, Sweden
| | - Tufve Nyholm
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | | | - Jonas Scherman
- Department of Hematology Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|