1
|
Surucu M, Ashraf MR, Romero IO, Zalavari LT, Pham D, Vitzthum LK, Gensheimer MF, Yang Y, Xing L, Kovalchuk N, Han B. Commissioning of a novel PET-Linac for biology-guided radiotherapy (BgRT). Med Phys 2024; 51:4389-4401. [PMID: 38703397 DOI: 10.1002/mp.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Biology-guided radiotherapy (BgRT) is a novel radiotherapy delivery technique that utilizes the tumor itself to guide dynamic delivery of treatment dose to the tumor. The RefleXion X1 system is the first radiotherapy system developed to deliver SCINTIX® BgRT. The X1 is characterized by its split arc design, employing two 90-degree positron emission tomography (PET) arcs to guide therapeutic radiation beams in real time, currently cleared by FDA to treat bone and lung tumors. PURPOSE This study aims to comprehensively evaluate the capabilities of the SCINTIX radiotherapy delivery system by evaluating its sensitivity to changes in PET contrast, its adaptability in the context of patient motion, and its performance across a spectrum of prescription doses. METHODS A series of experimental scenarios, both static and dynamic, were designed to assess the SCINTIX BgRT system's performance, including an end-to-end test. These experiments involved a range of factors, including changes in PET contrast, motion, and prescription doses. Measurements were performed using a custom-made ArcCHECK insert which included a 2.2 cm spherical target and a c-shape structure that can be filled with a PET tracer with varying concentrations. Sinusoidal and cosine4 motion patterns, simulating patient breathing, was used to test the SCINTIX system's ability to deliver BgRT during motion-induced challenges. Each experiment was evaluated against specific metrics, including Activity Concentration (AC), Normalized Target Signal (NTS), and Biology Tracking Zone (BTZ) bounded dose-volume histogram (bDVH) pass rates. The accuracy of the delivered BgRT doses on ArcCHECK and EBT-XD film were evaluated using gamma 3%/2 mm and 3%/3 mm analysis. RESULTS In static scenarios, the X1 system consistently demonstrated precision and robustness in SCINTIX dose delivery. The end-to-end delivery to the spherical target yielded good results, with AC and NTS values surpassing the critical thresholds of 5 kBq/mL and 2, respectively. Furthermore, bDVH analysis consistently confirmed 100% pass rates. These results were reaffirmed in scenarios involving changes in PET contrast, emphasizing the system's ability to adapt to varying PET avidities. Gamma analysis with 3%/2 mm (10% dose threshold) criteria consistently achieved pass rates > 91.5% for the static tests. In dynamic SCINTIX delivery scenarios, the X1 system exhibited adaptability under conditions of motion. Sinusoidal and cosine4 motion patterns resulted in 3%/3 mm gamma pass rates > 87%. Moreover, the comparison with gated stereotactic body radiotherapy (SBRT) delivery on a conventional c-arm Linac resulted in 93.9% gamma pass rates and used as comparison to evaluate the interplay effect. The 1 cm step shift tests showed low overall gamma pass rates of 60.3% in ArcCHECK measurements, while the doses in the PTV agreed with the plan with 99.9% for 3%/3 mm measured with film. CONCLUSIONS The comprehensive evaluation of the X1 radiotherapy delivery system for SCINTIX BgRT demonstrated good agreement for the static tests. The system consistently achieved critical metrics and delivered the BgRT doses per plan. The motion tests demonstrated its ability to co-localize the dose where the PET signal is and deliver acceptable BgRT dose distributions.
Collapse
Affiliation(s)
- Murat Surucu
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Ignacio Omar Romero
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Daniel Pham
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lucas Kas Vitzthum
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Yong Yang
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Hajare R, K K S, Kumar A, Kalita R, Kaginelli S, Mahantshetty U. Commissioning and dosimetric verification of volumetric modulated arc therapy for multiple modalities using electronic portal imaging device-based 3D dosimetry system: a novel approach. Radiol Phys Technol 2024; 17:412-424. [PMID: 38492203 DOI: 10.1007/s12194-024-00792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
The purpose of this study was to validate an electronic portal imaging device (EPID) based 3-dimensional (3D) dosimetry system for the commissioning of volumetric modulated arc therapy (VMAT) delivery for flattening filter (FF) and flattening filter free (FFF) modalities based on test suites developed according to American Association of Physicists in Medicine Task Group 119 (AAPM TG 119) and pre-treatment patient specific quality assurance (PSQA).With ionisation chamber, multiple-point measurement in various planes becomes extremely difficult and time-consuming, necessitating repeated exposure of the plan. The average agreement between measured and planned doses for TG plans is recommended to be within 3%, and both the ionisation chamber and PerFRACTION™ measurement were well within this prescribed limit. Both point dose differences with the planned dose and gamma passing rates are comparable with TG reported multi-institution results. From our study, we found that no significant differences were found between FF and FFF beams for measurements using PerFRACTION™ and ion chamber. Overall, PerFRACTION™ produces acceptable results to be used for commissioning and validating VMAT and for performing PSQA. The findings support the feasibility of integrating PerFRACTION™ into routine quality assurance procedures for VMAT delivery. Further multi-institutional studies are recommended to establish global baseline values and enhance the understanding of PerFRACTION™'s capabilities in diverse clinical settings.
Collapse
Affiliation(s)
- Raghavendra Hajare
- Department of Radiation Oncology, Homi Bhabha Cancer Hospital & Research Centre, Visakhapatnam, India.
- Division of Medical Physics, JSS Academy of Higher Education and Research, Mysuru, India.
| | - Sreelakshmi K K
- Department of Radiation Oncology, Homi Bhabha Cancer Hospital & Research Centre, Visakhapatnam, India
| | - Anil Kumar
- Department of Radiation Oncology, Homi Bhabha Cancer Hospital & Research Centre, Visakhapatnam, India
| | - Rituraj Kalita
- Department of Radiation Oncology, Tezpur Cancer Centre, Bihuguri, India
| | - Shanmukhappa Kaginelli
- Division of Medical Physics, JSS Academy of Higher Education and Research, Mysuru, India
| | - Umesh Mahantshetty
- Department of Radiation Oncology, Homi Bhabha Cancer Hospital & Research Centre, Visakhapatnam, India
| |
Collapse
|
3
|
Shi M, Cui S, Chuang C, Oderinde O, Kovalchuk N, Surucu M, Xing L, Han B. A time- and space-saving Monte Carlo simulation method using post-collimation generative adversarial network for dose calculation of an O-ring gantry Linac. Phys Med 2024; 119:103318. [PMID: 38382210 DOI: 10.1016/j.ejmp.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE This study explores the feasibility of employing Generative Adversarial Networks (GANs) to model the RefleXion X1 Linac. The aim is to investigate the accuracy of dose simulation and assess the potential computational benefits. METHODS The X1 Linac is a new radiotherapy machine with a binary multi-leaf collimation (MLC) system, facilitating innovative biology-guided radiotherapy. A total of 34 GAN generators, each representing a desired MLC aperture, were developed. Each generator was trained using a phase space file generated underneath the corresponding aperture, enabling the generation of particles and serving as a beam source for Monte Carlo simulation. Dose distributions in water were simulated for each aperture using both the GAN and phase space sources. The agreement between dose distributions was evaluated. The computational time reduction from bypassing the collimation simulation and storage space savings were estimated. RESULTS The percentage depth dose at 10 cm, penumbra, and full-width half maximum of the GAN simulation agree with the phase space simulation, with differences of 0.4 % ± 0.2 %, 0.32 ± 0.66 mm, and 0.26 ± 0.44 mm, respectively. The gamma passing rate (1 %/1mm) for the planar dose exceeded 90 % for all apertures. The estimated time-saving for simulating an plan using 5766 beamlets was 530 CPU hours. The storage usage was reduced by a factor of 102. CONCLUSION The utilization of the GAN in simulating the X1 Linac demonstrated remarkable accuracy and efficiency. The reductions in both computational time and storage requirements make this approach highly valuable for future dosimetry studies and beam modeling.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA; Department of Radiation Oncology, University of California, Irvine, Orange, CA, USA.
| | - Sunan Cui
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA; Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | | | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
4
|
Shi M, Simiele E, Han B, Pham D, Palomares P, Aguirre M, Gensheimer M, Vitzthum L, Le QT, Surucu M, Kovalchuk N. First-Year Experience of Stereotactic Body Radiation Therapy/Intensity Modulated Radiation Therapy Treatment Using a Novel Biology-Guided Radiation Therapy Machine. Adv Radiat Oncol 2024; 9:101300. [PMID: 38260216 PMCID: PMC10801639 DOI: 10.1016/j.adro.2023.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose The aim of this study was to present the first-year experience of treating patients using intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) with a biology-guided radiation therapy machine, the RefleXion X1 system, installed in a clinical setting. Methods and Materials A total of 78 patients were treated on the X1 system using IMRT and SBRT from May 2021 to May 2022. Clinical and technical data including treatment sites, number of pretreatment kilovoltage computed tomography (kVCT) scans, beam-on time, patient setup time, and imaging time were collected and analyzed. Machine quality assurance (QA) results, machine performance, and user satisfactory survey were also collected and reported. Results The most commonly treated site was the head and neck (63%), followed by the pelvis (23%), abdomen (8%), and thorax (6%). Except for 5 patients (6%) who received SBRT treatments for bony metastases in the pelvis, all treatments were conventionally fractionated IMRT. The number of kVCT scans per fraction was 1.2 ± 0.5 (mean ± standard deviation). The beam-on time was 9.2 ± 3.5 minutes. The patient setup time and imaging time per kVCT was 4.8 ± 2.6 minutes and 4.6 ± 1.5 minutes, respectively. The daily machine output deviation was 0.4 ± 1.2% from the baseline. The patient QA had a passing rate of 97.4 ± 2.8% at 3%/2 mm gamma criteria. The machine uptime was 92% of the total treatment time. The daily QA and kVCT image quality received the highest level of satisfaction. The treatment workflow for therapists received the lowest level of satisfaction. Conclusions One year after the installation, 78 patients were successfully treated with the X1 system using IMRT and/or SBRT. With the recent Food and Drug Administration clearance of biology-guided radiation therapy, our department is preparing to treat patients using positron emission tomography-guidance via a new product release, which will address deficiencies in the current image-guided radiation therapy workflow.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Radiation Oncology, Stanford University, Stanford, California
- Department of Radiation Oncology, University of California, Irvine, Orange, California
| | - Eric Simiele
- Department of Radiation Oncology, Stanford University, Stanford, California
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Daniel Pham
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Paul Palomares
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Michaela Aguirre
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Michael Gensheimer
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Stanford, California
| |
Collapse
|
5
|
Natarajan A, Khan S, Liang X, Nguyen H, Das N, Anders D, Malik N, Oderinde OM, Chin FT, Rosenthal E, Pratx G. Preclinical Evaluation of 89Zr-Panitumumab for Biology-Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 116:927-934. [PMID: 36669541 PMCID: PMC11290461 DOI: 10.1016/j.ijrobp.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Biology-guided radiation therapy (BgRT) uses real-time line-of-response data from on-board positron emission tomography (PET) detectors to guide beamlet delivery during therapeutic radiation. The current workflow requires 18F-fluorodeoxyglucose (FDG) administration daily before each treatment fraction. However, there are advantages to reducing the number of tracer injections by using a PET tracer with a longer decay time. In this context, we investigated 89Zr-panitumumab (89Zr-Pan), an antibody PET tracer with a half-life of 78 hours that can be imaged for up to 9 days using PET. METHODS AND MATERIALS The BgRT workflow was evaluated preclinically in mouse colorectal cancer xenografts (HCT116) using small-animal positron emission tomography/computed tomography (PET/CT) for imaging and image-guided kilovoltage conformal irradiation for therapy. Mice (n = 5 per group) received 7 MBq of 89Zr-Pan as a single dose 2 weeks after tumor induction, with or without fractionated radiation therapy (RT; 6 × 6.6 Gy) to the tumor region. The mice were imaged longitudinally to assess the kinetics of the tracer over 9 days. PET images were then analyzed to determine the stability of the PET signal in irradiated tumors over time. RESULTS Mice in the treatment group experienced complete tumor regression, whereas those in the control group were killed because of tumor burden. PET imaging of 89Zr-Pan showed well-delineated tumors with minimal background in both groups. On day 9 postinjection, tumor uptake of 89Zr-Pan was 7.2 ± 1.7 in the control group versus 5.2 ± 0.5 in the treatment group (mean percentage of injected dose per gram of tissue [%ID/g] ± SD; P = .07), both significantly higher than FDG uptake (1.1 ± 0.5 %ID/g) 1 hour postinjection. To assess BgRT feasibility, the clinical eligibility criteria was computed using human-equivalent uptake values that were extrapolated from preclinical PET data. Based on this semiquantitative analysis, BgRT may be feasible for 5 consecutive days after a single 740-MBq injection of 89Zr-Pan. CONCLUSIONS This study indicates the potential of long-lived antibody-based PET tracers for guiding clinical BgRT.
Collapse
Affiliation(s)
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Xuanwei Liang
- Department of Physics, Foothill College, Los Altos, California
| | - Hieu Nguyen
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Neeladrisingha Das
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David Anders
- Department of Radiology, Stanford University, Stanford, California
| | - Noeen Malik
- Department of Radiology, Stanford University, Stanford, California
| | | | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California
| | - Eben Rosenthal
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
6
|
Zhuang T, Gibbard G, Duan X, Tan J, Park Y, Lin MH, Sun Z, Oderinde OM, Lu W, Reynolds R, Godley A, Pompos A, Dan T, Garant A, Iyengar P, Timmerman R, Jiang S, Cai B. Evaluation of fan-beam kilovoltage computed tomography image quality on a novel biological-guided radiotherapy platform. Phys Imaging Radiat Oncol 2023; 26:100438. [PMID: 37342208 PMCID: PMC10277913 DOI: 10.1016/j.phro.2023.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 06/22/2023] Open
Abstract
Background and Purpose A recently developed biology-guided radiotherapy platform, equipped with positron emission tomography (PET) and computed tomography (CT), provides both anatomical and functional image guidance for radiotherapy. This study aimed to characterize performance of the kilovoltage CT (kVCT) system on this platform using standard quality metrics measured on phantom and patient images, using CT simulator images as reference. Materials and Methods Image quality metrics, including spatial resolution/modular transfer function (MTF), slice sensitivity profile (SSP), noise performance and image uniformity, contrast-noise ratio (CNR) and low-contrast resolution, geometric accuracy, and CT number (HU) accuracy, were evaluated on phantom images. Patient images were evaluated mainly qualitatively. Results On phantom images the MTF10% is about 0.68 lp/mm for kVCT in PET/CT Linac. The SSP agreed with nominal slice thickness within 0.7 mm. The diameter of the smallest visible target (1% contrast) is about 5 mm using medium dose mode. The image uniformity is within 2.0 HU. The geometric accuracy tests passed within 0.5 mm. Relative to CT simulator images, the noise is generally higher and the CNR is lower in PET/CT Linac kVCT images. The CT number accuracy is comparable between the two systems with maximum deviation from the phantom manufacturer range within 25 HU. On patient images, higher spatial resolution and image noise are observed on PET/CT Linac kVCT images. Conclusions Major image quality metrics of the PET/CT Linac kVCT were within vendor-recommended tolerances. Better spatial resolution but higher noise and better/comparable low contrast visibility were observed as compared to a CT simulator when images were acquired with clinical protocols.
Collapse
Affiliation(s)
- Tingliang Zhuang
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Grant Gibbard
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Xinhui Duan
- Department of Radiology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Jun Tan
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Yang Park
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Mu-Han Lin
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Zhihui Sun
- RefleXion Medical, Inc, Hayward, CA, USA
| | | | - Weiguo Lu
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Robert Reynolds
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Tu Dan
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Aurelie Garant
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| | - Bin Cai
- Department of Radiation Oncology, University of Texas- Southwestern Medical Center, Dallas, USA
| |
Collapse
|