1
|
Thongon N, Ma F, Baran N, Lockyer P, Liu J, Jackson C, Rose A, Furudate K, Wildeman B, Marchesini M, Marchica V, Storti P, Todaro G, Ganan-Gomez I, Adema V, Rodriguez-Sevilla JJ, Qing Y, Ha MJ, Fonseca R, Stein C, Class C, Tan L, Attanasio S, Garcia-Manero G, Giuliani N, Berrios Nolasco D, Santoni A, Cerchione C, Bueso-Ramos C, Konopleva M, Lorenzi P, Takahashi K, Manasanch E, Sammarelli G, Kanagal-Shamanna R, Viale A, Chesi M, Colla S. Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma. Nat Commun 2024; 15:1203. [PMID: 38331987 PMCID: PMC10853245 DOI: 10.1038/s41467-024-45350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.
Collapse
Affiliation(s)
- Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Lockyer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jintan Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Jackson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Rose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Marchesini
- IRCCS Instituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | | | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giannalisa Todaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yun Qing
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caleb Stein
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Caleb Class
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - David Berrios Nolasco
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Santoni
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Cerchione
- IRCCS Instituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | - Carlos Bueso-Ramos
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabet Manasanch
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Rashmi Kanagal-Shamanna
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Di Lazzaro Filho R, Yamamoto GL, Silva TJ, Rocha LA, Linnenkamp BDW, Castro MAA, Bartholdi D, Schaller A, Leeb T, Kelmann S, Utagawa CY, Steiner CE, Steinmetz L, Honjo RS, Kim CA, Wang L, Abourjaili-Bilodeau R, Campeau PM, Warman M, Passos-Bueno MR, Hoch NC, Bertola DR. Biallelic variants in DNA2 cause poikiloderma with congenital cataracts and severe growth failure reminiscent of Rothmund-Thomson syndrome. J Med Genet 2023; 60:1127-1132. [PMID: 37055165 DOI: 10.1136/jmg-2022-109119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare, heterogeneous autosomal recessive genodermatosis, with poikiloderma as its hallmark. It is classified into two types: type I, with biallelic variants in ANAPC1 and juvenile cataracts, and type II, with biallelic variants in RECQL4, increased cancer risk and no cataracts. We report on six Brazilian probands and two siblings of Swiss/Portuguese ancestry presenting with severe short stature, widespread poikiloderma and congenital ocular anomalies. Genomic and functional analysis revealed compound heterozygosis for a deep intronic splicing variant in trans with loss of function variants in DNA2, with reduction of the protein levels and impaired DNA double-strand break repair. The intronic variant is shared by all patients, as well as the Portuguese father of the European siblings, indicating a probable founder effect. Biallelic variants in DNA2 were previously associated with microcephalic osteodysplastic primordial dwarfism. Although the individuals reported here present a similar growth pattern, the presence of poikiloderma and ocular anomalies is unique. Thus, we have broadened the phenotypical spectrum of DNA2 mutations, incorporating clinical characteristics of RTS. Although a clear genotype-phenotype correlation cannot be definitively established at this moment, we speculate that the residual activity of the splicing variant allele could be responsible for the distinct manifestations of DNA2-related syndromes.
Collapse
Affiliation(s)
- Ricardo Di Lazzaro Filho
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
- Genômica/Genera, Diagnósticos da América SA, Barueri, Brazil
| | - Guilherme Lopes Yamamoto
- Genômica/Genera, Diagnósticos da América SA, Barueri, Brazil
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Tiago J Silva
- Departamento de Bioquímica do Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia A Rocha
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Bianca D W Linnenkamp
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Matheus Augusto Araújo Castro
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - André Schaller
- Department of Human Genetics, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Samantha Kelmann
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | | | - Leandra Steinmetz
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Rachel Sayuri Honjo
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Lisa Wang
- 9Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Matthew Warman
- Department of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
- Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Nicolas C Hoch
- Departamento de Bioquímica do Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Departamento de Genética e Biologia Evolutiva do Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
- Departamento de Pediatria do Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Thongon N, Ma F, Lockyer P, Baran N, Liu J, Jackson C, Rose A, Wildeman B, Marchesini M, Marchica V, Storti P, Giuliani N, Ganan-Gomez I, Adema V, Qing Y, Ha M, Fonseca R, Class C, Tan L, Kanagal-Shamanna R, Nolasco DB, Cerchione C, Montalban-Bravo G, Santoni A, Bueso-Ramos C, Konopleva M, Lorenzi P, Garcia-Manero G, Manasanch E, Viale A, Chesi M, Colla S. Targeting DNA2 Overcomes Metabolic Reprogramming in Multiple Myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529457. [PMID: 36865225 PMCID: PMC9980056 DOI: 10.1101/2023.02.22.529457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.
Collapse
|
5
|
DNA2 mutation causing multisystemic disorder with impaired mitochondrial DNA maintenance. J Hum Genet 2022; 67:691-699. [PMID: 36064591 DOI: 10.1038/s10038-022-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To describe a novel DNA2 variant contributing to defects in mtDNA maintenance and mtDNA depletion syndrome (MDS), and the clinical and histological findings associated with this variation. METHODS Herein, we describe the case of a patient who presented with hearing loss and myopathy, given the family history of similar findings in the father, was evaluated by sequencing of the deafness gene panel, mitochondrial genome, and the exome. Furthermore, tissue staining, mtDNA copy number detection, mtDNA sequencing, and long-range polymerase chain reaction tests were also conducted on the muscle biopsy specimen. In vitro experiments, including analyses of the mtDNA copy number; levels of ATP, ATPase, and reactive oxygen species (ROS); and the membrane potential, were performed. RESULTS The DNA2 heterozygous truncating variant c. 2368C > T (p.Q790X) was identified and verified as the cause of an mtDNA copy number decrement in both functional experiments and muscle tissue analyses. These changes were accompanied by reductions in ATP, ATPase, and ROS levels. CONCLUSION The DNA2 variant was a likely cause of MDS in this patient. These findings expand the mutational spectrum of MDS and improve our understanding of the functions of DNA2 by revealing its novel role in mtDNA maintenance.
Collapse
|
6
|
Manini A, Abati E, Comi GP, Corti S, Ronchi D. Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance. Ageing Res Rev 2022; 76:101578. [PMID: 35114397 DOI: 10.1016/j.arr.2022.101578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/26/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of mitochondrial DNA (mtDNA) homeostasis includes a variety of processes, such as mtDNA replication, repair, and nucleotides synthesis, aimed at preserving the structural and functional integrity of mtDNA molecules. Mutations in several nuclear genes (i.e., POLG, POLG2, TWNK, OPA1, DGUOK, MPV17, TYMP) impair mtDNA maintenance, leading to clinical syndromes characterized by mtDNA depletion and/or deletions in affected tissues. In the past decades, studies have demonstrated a progressive accumulation of multiple mtDNA deletions in dopaminergic neurons of the substantia nigra in elderly population and, to a greater extent, in Parkinson's disease patients. Moreover, parkinsonism has been frequently described as a prominent clinical feature in mtDNA instability syndromes. Among Parkinson's disease-related genes with a significant role in mitochondrial biology, PARK2 and LRRK2 specifically take part in mtDNA maintenance. Moreover, a variety of murine models (i.e., "Mutator", "MitoPark", "PD-mitoPstI", "Deletor", "Twinkle-dup" and "TwinkPark") provided in vivo evidence that mtDNA stability is required to preserve nigrostriatal integrity. Here, we review and discuss the clinical, genetic, and pathological background underlining the link between impaired mtDNA homeostasis and dopaminergic degeneration.
Collapse
|
7
|
Manini A, Meneri M, Rodolico C, Corti S, Toscano A, Comi GP, Musumeci O, Ronchi D. Case Report: Thymidine Kinase 2 (TK2) Deficiency: A Novel Mutation Associated With Childhood-Onset Mitochondrial Myopathy and Atypical Progression. Front Neurol 2022; 13:857279. [PMID: 35280287 PMCID: PMC8914305 DOI: 10.3389/fneur.2022.857279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The nuclear gene TK2 encodes the mitochondrial thymidine kinase, an enzyme involved in the phosphorylation of deoxycytidine and deoxythymidine nucleosides. Biallelic TK2 mutations are associated with a spectrum of clinical presentations mainly affecting skeletal muscle and featuring muscle mitochondrial DNA (mtDNA) instability. Current classification includes infantile- ( ≤ 1 year), childhood- (1–12 years), and late-onset (≥12 years) forms. In addition to age at onset, these forms differ for progression, life expectancy, and signs of mtDNA instability (mtDNA depletion vs. accumulation of multiple mtDNA deletions). Childhood-onset TK2 deficiency typically causes a rapidly progressive proximal myopathy, which leads to wheelchair-bound status within 10 years of disease onset, and severe respiratory impairment. Muscle biopsy usually reveals a combination of mitochondrial myopathy and dystrophic features with reduced mtDNA content. Here we report the case of an Italian patient presenting childhood-onset, slowly progressive mitochondrial myopathy, ptosis, hypoacusis, dysphonia, and dysphagia, harboring the TK2 variants c.278A>G and c.543del, the latter unreported so far. Compared to other childhood-onset TK2-patients, our case displays atypical features, including slowly progressive muscle weakness and absence of respiratory failure, which are usually observed in late-onset forms. This report extends the genetic background of TK2-related myopathy, highlighting the clinical overlap among different forms.
Collapse
Affiliation(s)
- Arianna Manini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Megi Meneri
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmelo Rodolico
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stefania Corti
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Olimpia Musumeci
| | - Dario Ronchi
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- *Correspondence: Dario Ronchi
| |
Collapse
|
8
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Up-regulation of DNA2 results in cell proliferation and migration in endometriosis. J Mol Histol 2021; 52:741-749. [PMID: 34047877 PMCID: PMC8324585 DOI: 10.1007/s10735-021-09983-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/24/2021] [Indexed: 10/26/2022]
Abstract
Accumulating evidence has suggests that women with advanced endometriosis exhibit alterations in the expression of genes in the endometrium compared to healthy controls. Furthermore, replication stress is a characteristic feature of cancer cells, which results from sustained proliferative signaling induced by either the activation of oncogenes or the loss of tumor suppressors. In the present study, we propose that DNA replication ATP-dependent helicase/nuclease 2 (DNA2) might be upregulated in endometriosis. Immunohistochemical staining results confirmed the hypothesis that DNA2 is overexpressed in the eutopic/ectopic endometrium compared to that in a control endometrium from a healthy donor. Subsequently, ectopic endometrium-derived endometrial mesenchymal stem cells (EMSCs) showed the highest level of DNA2 and checkpoint kinase 1 (CHK1), as well as the strongest proliferation and migration capabilities, followed by eutopic endometrium-derived EMSCs, and then control EMSCs. To further analyze the function of DNA2, we knocked-down DNA2 expression in KLE cells. As expected, proliferation and migration declined when cells were transfected with DNA2 small interfering RNA. Taken together, our study demonstrated the overexpression of DNA2 in human endometriosis, which might be responsible for the upregulated cell proliferation and migration. This study provides insights into the mechanisms underlying human endometriosis.
Collapse
|
10
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
11
|
Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ, de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 2021; 78:3791-3801. [PMID: 33544154 PMCID: PMC8106602 DOI: 10.1007/s00018-021-03772-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Savannah Sawaged
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
12
|
Duan X, Yang Y, Zhang H, Liu B, Wei W, Wang L, Sun C, Yao W, Cui L, Zhou X, Wang W. Polycyclic aromatic hydrocarbon exposure, miRNA genetic variations, and associated leukocyte mitochondrial DNA copy number: A cross-sectional study in China. CHEMOSPHERE 2020; 246:125773. [PMID: 31911328 DOI: 10.1016/j.chemosphere.2019.125773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Mitochondria DNA was preferentially attacked by the exogenous carcinogens including polycyclic aromatic hydrocarbons (PAHs) relative to nuclear DNA, and nuclear gene variants may account for variability in the mitochondrial DNA copy number (mtDNAcn). However, it remains unclear whether miRNA genetic variations are associated with mitochondrial DNA damage in the PAH-exposed workers. Therefore, we measured the leukocyte mtDNAcn, urinary 1-hydroxypyrene (1-OHPYR), environmental PAH exposure, and miRNA genetic polymorphisms among 544 coke oven workers and 238 healthy control participants. We found that the mtDNAcn in the exposure group (0.60 ± 0.29) was significantly lower than that in the control group (1.03 ± 0.31) (t = 18.931, P < 0.001). Spearman correlation analysis showed that the peripheral blood leukocyte mtDNAcn had significantly negative correlations with the levels of 1-OHPYR and environmental PAH exposure (P < 0.001). Covariance analysis indicated that miR-210 rs11246190 AA, miR-210 rs7395206 CC, and miR-126 rs2297538 GG probably promoted a decrease in leukocyte mtDNAcn in the exposure or control groups (P < 0.05). In generalized linear model, miR-210 rs11246190 GG was a protective factor of mtDNAcn, and environmental PAH exposure was the risk factor of the mtDNAcn. In conclusion, the decrease of leukocyte mtDNAcn is the result of a combination of environmental and genetic factors.
Collapse
Affiliation(s)
- Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China; Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Zhang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wan Wei
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liuya Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Changqing Sun
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liuxin Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoshan Zhou
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
13
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|