1
|
Papoff FMA, Astrea G, Mero S, Chicca L, Satolli S, Pasquariello R, Battini R, Tessa A, Santorelli FM. Early Diagnosis of AP5Z1/SPG48 Spastic Paraplegia: Case Report and Review of the Literature. Neuropediatrics 2024; 55:341-346. [PMID: 39059408 DOI: 10.1055/s-0044-1788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hereditary spastic paraplegias (HSPs) are a genetically heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower limb spasticity with pyramidal weakness. Around a dozen potential molecular mechanisms are recognized. Childhood HSP is a significant diagnostic challenge in clinical practice. Mutations in AP5Z1, which are associated with spastic paraplegia type 48 (SPG48), are extremely rare and seldom described in children.We report the clinical, radiologic, and molecular studies performed in a child harboring novel biallelic mutations in AP5Z1.The child presented a neurodevelopmental disorder with slight lower limb pyramidal signs. Brain magnetic resonance imaging (MRI) showed minimal white matter changes in the frontal horns of the lateral ventricles and a normally shaped corpus callosum. Western blotting in cultured skin fibroblasts indicated reduced protein expression, which confirmed the genetic diagnosis and framed this as a case of protein reduction in a context of impaired autophagy.Our findings expand the spectrum of phenotypes associated with mutations in AP5Z1, highlighting their clinical and pathophysiologic overlap with lysosomal storage disorders. SPG48 should be considered in the differential diagnosis of neurodevelopmental disorders even when pyramidal signs are minimal and brain MRI not fully informative.
Collapse
Affiliation(s)
- Francesca M A Papoff
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Serena Mero
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Laura Chicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Satolli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
2
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Naef V, Lieto M, Satolli S, De Micco R, Troisi M, Pasquariello R, Doccini S, Privitera F, Filla A, Tessitore A, Santorelli FM. SCAR32: Functional characterization and expansion of the clinical-genetic spectrum. Ann Clin Transl Neurol 2024; 11:1879-1886. [PMID: 38837640 PMCID: PMC11251466 DOI: 10.1002/acn3.52094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Biallelic mutations in PRDX3 have been linked to autosomal recessive spinocerebellar ataxia type 32. In this study, which aims to contribute to the growing body of knowledge on this rare disease, we identified two unrelated patients with mutations in PRDX3. We explored the impact of PRDX3 mutation in patient skin fibroblasts and the role of the gene in neurodevelopment. METHODS We performed trio exome sequencing that identified mutations in PRDX3 in two unrelated patients. We also performed functional studies in patient skin fibroblasts and generated a "crispant" zebrafish (Danio rerio) model to investigate the role of the gene during nervous system development. RESULTS Our study reports two additional patients. Patient 1 is a 19-year-old male who showed a novel homozygous c.525_535delGTTAGAAGGTT (p. Leu176TrpfsTer11) mutation as the genetic cause of cerebellar ataxia. Patient 2 is a 20-year-old male who was found to present the known c.425C>G/p. Ala142Gly variant in compound heterozygosity with the p. Leu176TrpfsTer11 one. While the fibroblast model failed to recapitulate the pathological features associated with PRDX3 loss of function, our functional characterization of the prdx3 zebrafish model revealed motor defects, increased susceptibility to reactive oxygen species-triggered apoptosis, and an impaired oxygen consumption rate. CONCLUSIONS We identified a new variant, thereby expanding the genetic spectrum of PRDX3-related disease. We developed a novel zebrafish model to investigate the consequences of prdx3 depletion on neurodevelopment and thus offered a potential new tool for identifying new treatment opportunities.
Collapse
Affiliation(s)
- Valentina Naef
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Maria Lieto
- Department of Neurology and Stroke UnitOspedale del Mare HospitalNaplesItaly
| | - Sara Satolli
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Martina Troisi
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Rosa Pasquariello
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Stefano Doccini
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Flavia Privitera
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Alessandro Filla
- Department of NeurosciencesReproductive and Odontostomatological SciencesFederico II UniversityNaplesItaly
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | |
Collapse
|
4
|
Orsucci D, Tessa A, Caldarazzo Ienco E, Trovato R, Natale G, Bilancieri G, Giuntini M, Napolitano A, Salvetti S, Vista M, Santorelli FM. Clinical and genetic features of dominant Essential Tremor in Tuscany, Italy: FUS, CAMTA1, ATXN1 and beyond. J Neurol Sci 2024; 460:123012. [PMID: 38626532 DOI: 10.1016/j.jns.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Essential Tremor (ET) is one of the most common neurological disorders. In most instances ET is inherited as an autosomal dominant trait with age-related penetrance (virtually complete in advanced age); however, ET genetics remains elusive. The current study aims to identify possibly pathogenic genetic variants in a group of well-characterized ET families. METHODS 34 individuals from 14 families with dominant ET were clinically evaluated and studied by whole exome sequencing studies (after excluding trinucleotide expansion disorders). RESULTS Most patients had pure ET. In 4 families, exome studies could identify a genetic variant potentially able to significantly alter the protein structure (CADD >20, REVEL score > 0.25), shared by all the affected individuals (in CAMTA1, FUS, MYH14, SGCE genes). In another family there were two variants in dominant genes (PCDH9 and SQSTM1). Moreover, an interrupted "intermediate" trinucleotide expansion in ATXN1 ("SCA1") was identified in a further family with pure ET. CONCLUSION Combining our observations together with earlier reports, we can conclude that ET genes confirmed in at least two families to date include CAMTA1 and FUS (reported here), as well as CACNA1G, NOTCH2NLC and TENM4. Most cases of familial ET, inherited with an autosomal dominant inheritance, may result from "mild" variants of many different genes that, when affected by more harmful genetic variants, lead to more severe neurological syndromes (still autosomal dominant). Thus, ET phenotype may be the "mild", incomplete manifestation of many other dominant neurogenetic diseases. These findings further support evidence of genetic heterogeneity for such disease(s). Author's keywords: cerebellar ataxias, movement disorders, neurogenetics, rare neurological disorders, tremor.
Collapse
Affiliation(s)
- D Orsucci
- Unit of Neurology, San Luca Hospital, Lucca, Italy.
| | - A Tessa
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | | | - R Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Natale
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Bilancieri
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - M Giuntini
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - A Napolitano
- Unit of Neurology, Apuane Hospital, Massa Carrara, Italy
| | - S Salvetti
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - M Vista
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | | |
Collapse
|
5
|
Franchino CA, Brughera M, Baderna V, De Ritis D, Rocco A, Seneca S, Regal L, Podini P, D’Antonio M, Toro C, Quattrini A, Scalais E, Maltecca F. Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5. Brain 2024; 147:1043-1056. [PMID: 37804316 PMCID: PMC10907083 DOI: 10.1093/brain/awad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.
Collapse
Affiliation(s)
- Camilla Aurora Franchino
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Martina Brughera
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Valentina Baderna
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Alessandra Rocco
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Sara Seneca
- Medical Center of Genetic, UZ-VUB, Vrije Universiteit Brussels, 1090 Brussels Jette, Belgium
| | - Luc Regal
- Pediatric Neurology and Metabolism, UZ-VUB, Vrije Universiteit Brussels, 1090 Brussels Jette, Belgium
| | - Paola Podini
- Experimental Neuropathology Unit, Division of Neuroscience and Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience and Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Emmanuel Scalais
- Department of Pediatric, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, L1210 Luxembourg, Luxembourg
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
6
|
Colucci F, Neri M, Fortunato F, Ferlini A, Carrozzo R, Torraco A, Lamantea E, Legati A, Tecilla G, Pugliatti M, Sensi M. AFG3L2 Biallelic Mutation: Clinical Heterogeneity in Two Italian Patients. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1313-1319. [PMID: 36447112 DOI: 10.1007/s12311-022-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.
Collapse
Affiliation(s)
- Fabiana Colucci
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
- Department of Neuroscience and Rehabilitation, Azienda Ospedaliero-Universitaria S. Anna, Ferrara, Italy.
| | - Marcella Neri
- Department of Medical Sciences, Unit of Medical Genetics, Universita Degli Studi Di Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Department of Medical Sciences, Unit of Medical Genetics, Universita Degli Studi Di Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, Universita Degli Studi Di Ferrara, Ferrara, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ginevra Tecilla
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Mariachiara Sensi
- Department of Neuroscience and Rehabilitation, Azienda Ospedaliero-Universitaria S. Anna, Ferrara, Italy
| |
Collapse
|
7
|
Torella A, Ricca I, Piluso G, Galatolo D, De Michele G, Zanobio M, Trovato R, De Michele G, Zeuli R, Pane C, Cocozza S, Saccà F, Santorelli FM, Nigro V, Filla A. A new genetic cause of spastic ataxia: the p.Glu415Lys variant in TUBA4A. J Neurol 2023; 270:5057-5063. [PMID: 37418012 PMCID: PMC10511369 DOI: 10.1007/s00415-023-11816-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of α- and β-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurodegenerative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis.
Collapse
Affiliation(s)
- Annalaura Torella
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Ivana Ricca
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | | | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Roberta Zeuli
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
| | - Chiara Pane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Sirio Cocozza
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Caserta, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy.
| |
Collapse
|
8
|
Jin T, Kuang Y, Luo S, Wang R, Chen K, Jiang M, Ren L, Sun Z, Duan L, Huang S. Novel compound heterozygous mutations in the AFG3L2 gene in a Chinese child with microcephaly, early-onset seizures, and cerebral atrophy. Heliyon 2023; 9:e14766. [PMID: 37025825 PMCID: PMC10070717 DOI: 10.1016/j.heliyon.2023.e14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background The most common disease caused by biallelic AFG3L2 mutations is spastic ataxia type 5 (SPAX5). Identification of complex phenotypes resulting from biallelic AFG3L2 mutations has been increasing in recent years. Methods A retrospective analysis was performed on a child with microcephaly and recurrent seizures. The child underwent physical and neurological examinations, laboratory tests, electroencephalography (EEG), and brain magnetic resonance imaging (MRI). Trio-whole-exome sequencing (trio-WES) was performed to identify possible causative mutations. Results We described a child who exhibited early-onset and intractable epilepsy, developmental regression, microcephaly, and premature death. Neuroimaging revealed global cerebral atrophy (GCA) involving the cerebrum, cerebellum, corpus callosum, brainstem, cerebellar vermis, and basal ganglia. On trio-WES, two novel compound heterozygous mutations, c.1834G > T (p.E612*) and c.2176-6T > A in the AFG3L2 gene, were identified in this patient. Conclusions Our findings have expanded the mutation spectrum of the AFG3L2 gene and identified a severe neurodegenerative phenotype of global cerebral atrophy caused by biallelic AFG3L2 mutations.
Collapse
Affiliation(s)
- Tingting Jin
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Ying Kuang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Shulin Luo
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Kun Chen
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Minmin Jiang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Lingyan Ren
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhaolin Sun
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- Corresponding author. School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Lifen Duan
- Epilepsy Center, Children's Hospital Affiliated of Kunming Medical University, Kunming, Yunnan 650000, China
- Corresponding author.
| | - Shengwen Huang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- Corresponding author. Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| |
Collapse
|
9
|
Wong WK, Troedson C, Dale RC, Roscioli T, Field M, Palmer E, Martin EM, Kumar KR, Mohammad SS. Levodopa Responsive Dystonia Parkinsonism, Intellectual Disability, and Optic Atrophy Due to a Heterozygous Missense Variant in AFG3L2. Mov Disord Clin Pract 2022; 9:S32-S35. [PMID: 36110148 PMCID: PMC9464989 DOI: 10.1002/mdc3.13538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wui-Kwan Wong
- TY Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Sydney New South Wales Australia.,Children's Hospital at Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health University of Sydney Westmead New South Wales Australia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Sydney New South Wales Australia
| | - Russell C Dale
- Children's Hospital at Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health University of Sydney Westmead New South Wales Australia
| | - Tony Roscioli
- Randwick Genomics Laboratory NSW Health Pathology, Prince of Wales Hospital Sydney New South Wales Australia.,Centre for Clinical Genetics Sydney Children's Hospital Randwick New South Wales Australia.,Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School University of New South Wales Sydney New South Wales Australia
| | - Michael Field
- Genetics of Learning Disability (GoLD) service Hunter Genetics Newcastle New South Wales Australia
| | - Elizabeth Palmer
- Centre for Clinical Genetics Sydney Children's Hospital Randwick New South Wales Australia.,School of Women's and Children's Health University of New South Wales Randwick New South Wales Australia
| | - Ellenore M Martin
- Brain and Mitochondrial Research Group Murdoch Children's Research Institute Melbourne Victoria Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Neurology Department Concord Repatriation General Hospital, Concord Clinical School, The University of Sydney Sydney New South Wales Australia.,Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Darlinghurst New South Wales Australia
| | - Shekeeb S Mohammad
- TY Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Sydney New South Wales Australia.,Children's Hospital at Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health University of Sydney Westmead New South Wales Australia
| |
Collapse
|
10
|
NGS in Hereditary Ataxia: When Rare Becomes Frequent. Int J Mol Sci 2021; 22:ijms22168490. [PMID: 34445196 PMCID: PMC8395181 DOI: 10.3390/ijms22168490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.
Collapse
|
11
|
De Michele G, Galatolo D, Galosi S, Mignarri A, Silvestri G, Casali C, Leuzzi V, Ricca I, Barghigiani M, Tessa A, Cioffi E, Caputi C, Riso V, Dotti MT, Saccà F, De Michele G, Cocozza S, Filla A, Santorelli FM. Episodic ataxia and severe infantile phenotype in spinocerebellar ataxia type 14: expansion of the phenotype and novel mutations. J Neurol 2021; 269:1476-1484. [PMID: 34292398 PMCID: PMC8857164 DOI: 10.1007/s00415-021-10712-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/30/2022]
Abstract
Introduction Spinocerebellar ataxia type 14 (SCA14) is a dominantly inherited neurological disorder characterized by slowly progressive cerebellar ataxia. SCA14 is caused by mutations in PRKCG, a gene encoding protein kinase C gamma (PKCγ), a master regulator of Purkinje cells development. Methods We performed next-generation sequencing targeted resequencing panel encompassing 273 ataxia genes in 358 patients with genetically undiagnosed ataxia. Results We identified fourteen patients in ten families harboring nine pathogenic heterozygous variants in PRKCG, seven of which were novel. We encountered four patients with not previously described phenotypes: one with episodic ataxia, one with a spastic paraparesis dominating her clinical manifestations, and two children with an unusually severe phenotype. Conclusions Our study broadens the genetic and clinical spectrum of SCA14. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10712-5.
Collapse
Affiliation(s)
- Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Daniele Galatolo
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Andrea Mignarri
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Gabriella Silvestri
- Department of Neurosciences, Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Ivana Ricca
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Melissa Barghigiani
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Alessandra Tessa
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Vittorio Riso
- Department of Neurosciences, Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, Neurology and Neurometabolic Unit, University of Siena, Siena, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Filippo M Santorelli
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
12
|
Mero S, Salviati L, Leuzzi V, Rubegni A, Calderan C, Nardecchia F, Galatolo D, Desbats MA, Naef V, Gemignani F, Novelli M, Tessa A, Battini R, Santorelli FM, Marchese M. New pathogenic variants in COQ4 cause ataxia and neurodevelopmental disorder without detectable CoQ 10 deficiency in muscle or skin fibroblasts. J Neurol 2021; 268:3381-3389. [PMID: 33704555 DOI: 10.1007/s00415-021-10509-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
COQ4 is a component of an enzyme complex involved in the biosynthesis of coenzyme Q10 (CoQ10), a molecule with primary importance in cell metabolism. Mutations in the COQ4 gene are responsible for mitochondrial diseases showing heterogeneous age at onset, clinical presentations and association with CoQ10 deficiency. We herein expand the phenotypic and genetic spectrum of COQ4-related diseases, by reporting two patients harboring bi-allelic variants but not showing CoQ10 deficiency. One patient was found to harbor compound heterozygous mutations (specifically, c.577C>T/p.Pro193Ser and the previously reported c.718C>T/p.Arg240Cys) associated with progressive spasticity, while the other harbored two novel missense (c.284G>A/p.Gly95Asp and c.305G>A/p.Arg102His) associated with a neurodevelopmental disorder. Both patients presented motor impairment and ataxia. To further understand the role of COQ4, we performed functional studies in patient-derived fibroblasts, yeast and "crispant" zebrafish larvae. Micro-oxygraphy showed impaired oxygen consumption rates in one patient, while yeast complementation assays showed that all the mutations were presumably disease related. Moreover, characterization of the coq4 F0 CRISPR zebrafish line showed motor defects and cell reduction in a specific area of the hindbrain, a region reminiscent of the human cerebellum. Our expanded phenotype associated with COQ4 mutations allowed us to investigate, for the first time, the role of COQ4 in brain development in vivo.
Collapse
Affiliation(s)
- Serena Mero
- IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Vincenzo Leuzzi
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Calderan
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Francesca Nardecchia
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | | | | | - Maria Novelli
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
13
|
Ruggiero L, Iovino A, Dubbioso R, Cocozza S, Trovato R, Aruta F, Pontillo G, Barghigiani M, Brunetti A, Santorelli FM, Manganelli F, Iodice R. Multimodal evaluation of an Italian family with a hereditary spastic paraplegia and POLR3A mutations. Ann Clin Transl Neurol 2020; 7:2326-2331. [PMID: 33085208 PMCID: PMC7664249 DOI: 10.1002/acn3.51221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
We describe an Italian family with adult‐onset pure hereditary spastic paraplegia due to biallelic variants in POLR3A gene [c.1909 + 22G > A and c.3839dupT (p.M1280fs*20]. MRI showed a mild hyperintensity of superior cerebellar peduncles and cervical spinal cord atrophy. The neurophysiological metrics about intracortical excitability showed higher values of motor thresholds and a significant reduction of short interval intracortical inhibition (SICI) in the patient with a more severe phenotype. Our multimodal evaluation further expands the wide phenotypic spectrum associated with mutations in the POLR3A gene. An extensive genotype–phenotype correlation study is necessary to explain the role of the many new mutations on the function of protein.
Collapse
Affiliation(s)
- Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Aniello Iovino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Francesco Aruta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Fiore Manganelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy.,IRCCS SDN (Istituto di Ricovero e Cura a Carattere Scientifico), Naples, Italy
| |
Collapse
|