1
|
Mkhikian H, Zhou RW, Saryan H, Sánchez CD, Balakrishnan A, Dang J, Mortales CL, Demetriou M. N-Glycan Branching Regulates BTLA Opposite to PD-1 to Limit T Cell Hyperactivity Induced by Branching Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1329-1337. [PMID: 39269653 DOI: 10.4049/jimmunol.2300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin-glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4. However, the role of N-glycan branching in regulating cell surface levels of other checkpoint receptors such as BTLA (B and T lymphocyte attenuator) and PD-1 (programmed cell death protein 1) is unknown. In this study, we report that whereas branching significantly enhances PD-1 cell surface expression by reducing loss from endocytosis, the opposite occurs with BTLA in both T cells and B cells. T cell hyperactivity induced by branching deficiency was opposed by BTLA ligation proportional to increased BTLA expression. Other members of the BTLA/HVEM (herpesvirus entry mediator) signaling axis in T cells, including HVEM, LIGHT, and CD160, are largely unaltered by branching. Thus, branching-mediated endocytosis of BTLA is opposite of branching-induced inhibition of PD-1 endocytosis. In this manner, branching deficiency-induced upregulation of BTLA appears to serve as a checkpoint to limit extreme T cell hyperactivity and proinflammatory outcomes in T cells with low branching.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Aswath Balakrishnan
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Justin Dang
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA
| |
Collapse
|
2
|
Menéndez SG, Manucha W. Vitamin D as a Modulator of Neuroinflammation: Implications for Brain Health. Curr Pharm Des 2024; 30:323-332. [PMID: 38303529 DOI: 10.2174/0113816128281314231219113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
Neuroinflammation represents a critical immune response within the brain, playing a pivotal role in defense against injury and infection. However, when this response becomes chronic, it can contribute to the development of various neurodegenerative and psychiatric disorders. This bibliographic review delves into the role of vitamin D in modulating neuroinflammation and its implications for brain health, particularly in the context of neurological and psychiatric disorders. While vitamin D is traditionally associated with calcium homeostasis and bone health, it also exerts immunomodulatory and neuroprotective effects within the central nervous system. Through comprehensive analysis of preclinical and clinical studies, we uncover how vitamin D, acting through its receptors in glial cells, may influence the production of proinflammatory cytokines and antioxidants, potentially mitigating the cascade of events leading to neuronal damage. Clinical research has identified vitamin D deficiency as a common thread in the increased risks of multiple sclerosis, Parkinson's disease, Alzheimer's, and depression, among others. Furthermore, preclinical models suggest vitamin D's regulatory capacity over inflammatory mediators, its protective role against neuronal apoptosis, and its contribution to neurogenesis and synaptic plasticity. These insights underscore the potential of vitamin D supplementation not only in slowing the progression of neurodegenerative diseases but also in improving the quality of life for patients suffering from psychiatric conditions. Future clinical studies are essential to validate these findings and further our understanding of vitamin D's capacity to prevent or alleviate symptoms, opening new avenues for therapeutic strategies against neuroinflammation-related pathologies. Neuroinflammation is a crucial immune response in the brain against injuries or infections, but its persistence can lead to diseases such as Alzheimer's, Parkinson's, multiple sclerosis, and depression. Cholecalciferol (Vitamin D3) emerges as a regulator of neuroinflammation, present in brain cells such as astrocytes and microglia, modulating immune function. Vitamin D's mechanisms of action include cytokine modulation and regulation of nuclear and mitochondrial genes. It adjusts inflammatory mediators and antioxidants, resulting in neuroprotective effects. Additionally, vitamin D impacts neurotransmitter synthesis and brain plasticity. This positions vitamin D as a potential adjunct in treating diseases like Alzheimer's and Parkinson's. Lastly, its role in intestinal microbiota and serotonin synthesis contributes to psychiatric disorders like schizophrenia and depression. Thus, vitamin D presents a novel therapeutic approach for neuroinflammatory, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sebastián García Menéndez
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, San Juan 5400, Argentina
- Departamento de Patología, Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Pathology and Pharmacology Department, Centro Científico Tecnológico, Mendoza 5500, Argentina
| | - Walter Manucha
- Facultad de Ciencias Químicas y Tecnológicas, Instituto de Investigaciones en Ciencias Químicas, Universidad Católica de Cuyo, San Juan 5400, Argentina
- Departamento de Patología, Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Pathology and Pharmacology Department, Centro Científico Tecnológico, Mendoza 5500, Argentina
| |
Collapse
|
3
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
4
|
Sy M, Newton BL, Pawling J, Hayama KL, Cordon A, Yu Z, Kuhle J, Dennis JW, Brandt AU, Demetriou M. N-acetylglucosamine inhibits inflammation and neurodegeneration markers in multiple sclerosis: a mechanistic trial. J Neuroinflammation 2023; 20:209. [PMID: 37705084 PMCID: PMC10498575 DOI: 10.1186/s12974-023-02893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.
Collapse
Affiliation(s)
- Michael Sy
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Barbara L Newton
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Judy Pawling
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| | - Ken L Hayama
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Andres Cordon
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Zhaoxia Yu
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California Irvine, Bren Hall 2019, Irvine, CA, 92697, USA
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Mittlere Strasse 83, 4056, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alexander U Brandt
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA
| | - Michael Demetriou
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA, 92697, USA.
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, USA.
| |
Collapse
|
5
|
Sy M, Brandt AU, Lee SU, Newton BL, Pawling J, Golzar A, Rahman AMA, Yu Z, Cooper G, Scheel M, Paul F, Dennis JW, Demetriou M. N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J Biol Chem 2021; 295:17413-17424. [PMID: 33453988 PMCID: PMC7762951 DOI: 10.1074/jbc.ra120.015595] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Indexed: 01/11/2023] Open
Abstract
Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.
Collapse
Affiliation(s)
- Michael Sy
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Alexander U Brandt
- Department of Neurology, University of California Irvine, Irvine, California, USA; Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sung-Uk Lee
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Barbara L Newton
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Judy Pawling
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Autreen Golzar
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Anas M A Rahman
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhaoxia Yu
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California Irvine, Irvine, California, USA
| | - Graham Cooper
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Einstein Center for Neurosciences, Berlin, Germany; Department of Experimental Neurology and Center for Stroke Research, Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Experimental Neurology and Center for Stroke Research, Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Demetriou
- Department of Neurology, University of California Irvine, Irvine, California, USA; Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA.
| |
Collapse
|