1
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
2
|
Somerville EN, Krohn L, Senkevich K, Yu E, Ahmad J, Asayesh F, Ruskey JA, Speigelman D, Fahn S, Waters C, Sardi SP, Alcalay RN, Gan-Or Z. Genome-wide association study of glucocerebrosidase activity modifiers. RESEARCH SQUARE 2024:rs.3.rs-4425669. [PMID: 38883744 PMCID: PMC11177962 DOI: 10.21203/rs.3.rs-4425669/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
One of the most common genetic risk factors for Parkinson's disease (PD) are variants in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GCase deficiency has been associated with an increased PD risk, but not all individuals with low GCase activity are carriers of GBA1 mutations, suggesting other factors may be acting as modifiers. We aimed to discover common variants associated with GCase activity, as well as replicate previously reported associations, by performing a genome-wide association study using two independent cohorts: a Columbia University cohort consisting of 697 PD cases and 347 controls and the Parkinson's Progression Markers Initiative (PPMI) cohort consisting of 357 PD cases and 163 controls. As expected, GBA1 variants have the strongest association with decreased activity, led by p.N370S (beta = -4.36, se = 0.32, p = 5.05e-43). We also identify a novel association in the GAA locus (encoding for acid alpha-glucosidase, beta = -0.96, se = 0.17, p = 5.23e-09) that may be the result of an interaction between GCase and acid alpha-glucosidase based on various interaction analyses. Lastly, we show that several PD-risk loci are potentially associated with GCase activity. Further research will be needed to replicate and validate our findings and to uncover the functional connection between acid alpha-glucosidase and GCase.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Lynne Krohn
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | | | - Eric Yu
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jamil Ahmad
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Farnaz Asayesh
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Jennifer A Ruskey
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Dan Speigelman
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University
| |
Collapse
|
3
|
Ostrozovicova M, Tamas G, Dušek P, Grofik M, Han V, Holly P, Jech R, Kalinova K, Klivenyi P, Kovacs N, Kulcsarova K, Kurca E, Lackova A, Lee H, Lewis P, Magocova V, Marekova M, Murphy D, Necpal J, Pinter D, Rabajdova M, Růžička E, Serranova T, Smilowska K, Soos K, Straka I, Svorenova T, Valkovic P, Zarubova K, Gdovinova Z, Houlden H, Rizig M, Skorvanek M. p.L1795F LRRK2 variant is a common cause of Parkinson's disease in Central Europe. RESEARCH SQUARE 2024:rs.3.rs-4378197. [PMID: 38854119 PMCID: PMC11160925 DOI: 10.21203/rs.3.rs-4378197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pathogenic variants in LRRK2 are one of the most common genetic risk factors for Parkinson's disease (PD). Recently, the lesser-known p.L1795F variant was proposed as a strong genetic risk factor for PD, however, further families are currently lacking in literature. A multicentre young onset and familial PD cohort (n = 220) from 9 movement disorder centres across Central Europe within the CEGEMOD consortium was screened for rare LRRK2 variants using whole exome sequencing data. We identified 4 PD cases with heterozygous p.L1795F variant. All 4 cases were characterised by akinetic-rigid PD phenotype with early onset of severe motor fluctuations, 2 receiving LCIG therapy and 2 implanted with STN DBS; all 4 cases showed unsatisfactory effect of advanced therapies on motor fluctuations. Our data also suggest that p.L1795F may represent the most common currently known pathogenic LRRK2 variant in Central Europe compared to the more studied p.G2019S, being present in 1.81% of PD cases within the Central European cohort and 3.23% of familial PD cases. Together with the ongoing clinical trials for LRRK2 inhibitors, this finding emphasises the urgent need for more ethnic diversity in PD genetic research.
Collapse
Affiliation(s)
- Miriam Ostrozovicova
- Pavol Jozef Safarik University and University Hospital of L. Pasteur and UCL Queen Square Institute of Neurology
| | | | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Milan Grofik
- Jessenius Faculty of Medicine, Comenius University and University Hospital Martin
| | - Vladimir Han
- P.J. Safarik University and University Hospital of L. Pasteur
| | - Petr Holly
- First Faculty of Medicine, Charles University and General University Hospital in Prague
| | | | | | | | | | | | - Egon Kurca
- Comenius University and University Hospital Martin
| | | | - Hamin Lee
- UCL Queen Square Institute of Neurology
| | | | | | | | | | | | | | | | | | - Tereza Serranova
- First Faculty of Medicine, Charles University and General University Hospital in Prague
| | - Katarzyna Smilowska
- Radboud University Medical Centre; Donders institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen
| | | | - Igor Straka
- Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava
| | | | - Peter Valkovic
- Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava and Centre of Experimental Medicine, Slovak Academy of Sciences
| | - Katerina Zarubova
- Second Faculty of Medicine, Charles University and Motol University Hospital
| | | | - Henry Houlden
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
4
|
Feng S, Rcheulishvili N, Jiang X, Zhu P, Pan X, Wei M, Wang PG, Ji Y, Papukashvili D. A review on Gaucher disease: therapeutic potential of β-glucocerebrosidase-targeted mRNA/saRNA approach. Int J Biol Sci 2024; 20:2111-2129. [PMID: 38617529 PMCID: PMC11008270 DOI: 10.7150/ijbs.87741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme β-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.
Collapse
Affiliation(s)
- Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Pan Zhu
- Cheerland Biomedicine, Shenzhen, China
| | - Xuehua Pan
- Shenzhen Pengbo Biotech Co. Ltd, Shenzhen, China
| | - Meilan Wei
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Ji
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Usenko T, Bezrukova A, Basharova K, Baydakova G, Shagimardanova E, Blatt N, Rizvanov A, Limankin O, Novitskiy M, Shnayder N, Izyumchenko A, Nikolaev M, Zabotina A, Lavrinova A, Kulabukhova D, Nasyrova R, Palchikova E, Zalutskaya N, Miliukhina I, Barbitoff Y, Glotov O, Glotov A, Taraskina A, Neznanov N, Zakharova E, Pchelina S. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites 2023; 14:30. [PMID: 38248833 PMCID: PMC10819534 DOI: 10.3390/metabo14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Recent data described that patients with lysosomal storage disorders (LSDs) may have clinical schizophrenia (SCZ) features. Disruption of lipid metabolism in SCZ pathogenesis was found. Clinical features of schizophrenia (SCZ) have been demonstrated in patients with several lysosomal storage disorders (LSDs). Taking into account the critical role of lysosomal function for neuronal cells' lysosomal dysfunction could be proposed in SCZ pathogenesis. The current study analyzed lysosomal enzyme activities and the alpha-synuclein level in the blood of patients with late-onset SCZ. In total, 52 SCZ patients with late-onset SCZ, 180 sporadic Parkinson's disease (sPD) patients, and 176 controls were recruited. The enzymatic activity of enzymes associated with mucopolysaccharidosis (alpha-L-Iduronidase (IDUA)), glycogenosis (acid alpha-glucosidase (GAA)) and sphingolipidosis (galactosylceramidase (GALC), glucocerebrosidase (GCase), alpha-galactosidase (GLA), acid sphingomyelinase (ASMase)) and concentration of lysosphingolipids (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), and lysosphingomyelin (LysoSM)) were measured using LC-MS/MS. The alpha-synuclein level was estimated in magnetically separated CD45+ blood cells using the enzyme-linked immunosorbent assay (ELISA). Additionally, NGS analysis of 11 LSDs genes was conducted in 21 early-onset SCZ patients and 23 controls using the gene panel PGRNseq-NDD. Decreased ASMase, increased GLA activities, and increased HexSpn, LysoGb3, and LysoSM concentrations along with an accumulation of the alpha-synuclein level were observed in late-onset SCZ patients in comparison to the controls (p < 0.05). Four rare deleterious variants among LSDs genes causing mucopolysaccharidosis type I (IDUA (rs532731688, rs74385837) and type III (HGSNAT (rs766835582)) and sphingolipidosis (metachromatic leukodystrophy (ARSA (rs201251634)) were identified in five patients from the group of early-onset SCZ patients but not in the controls. Our findings supported the role of sphingolipid metabolism in SCZ pathogenesis. Aberrant enzyme activities and compounds of sphingolipids associated with ceramide metabolism may lead to accumulation of alpha-synuclein and may be critical in SCZ pathogenesis.
Collapse
Affiliation(s)
- Tatiana Usenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anastasia Bezrukova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Galina Baydakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Research Center for Medical Genetics, 115478 Moscow, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.S.); (N.B.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Oleg Limankin
- Psychiatric Hospital No. 1 Named after P. P. Kashchenko, 195009 Saint Petersburg, Russia;
- North-Western Medical University Named after P. I.I. Mechnikov of the Ministry of Health of the Russian Federation, 191015 Saint Petersburg, Russia
| | - Maxim Novitskiy
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Natalia Shnayder
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Artem Izyumchenko
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Mikhail Nikolaev
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Zabotina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Anna Lavrinova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Darya Kulabukhova
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Regina Nasyrova
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
| | - Ekaterina Palchikova
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Natalia Zalutskaya
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | - Irina Miliukhina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
- Institute of the Human Brain of RAS, 197022 Saint Petersburg, Russia
| | - Yury Barbitoff
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Bioinformatics Institute, 197342 Saint Petersburg, Russia
| | - Oleg Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- Cerbalab Ltd., 197136 Saint Petersburg, Russia
- Pediatric Research and Clinical Center of Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproductology, 199034 Saint Petersburg, Russia; (Y.B.); (O.G.); (A.G.)
- School of Medicine, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Taraskina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| | - Nikolai Neznanov
- Center for Personalized Psychiatry and Neurology of the N.N. V.M. Bekhtereva, 192019 Saint Petersburg, Russia; (M.N.); (N.S.); (R.N.); (N.N.)
- V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (E.P.); (N.Z.)
| | | | - Sofya Pchelina
- Department of Molecular Genetic and Nanobiological Technologies Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia; (T.U.); (A.B.); (A.I.); (M.N.); (A.Z.); (D.K.); (I.M.); (A.T.); (S.P.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre Kurchatov Institute, 188300 Gatchina, Russia (G.B.); (A.L.)
| |
Collapse
|
6
|
Andica C, Kamagata K, Uchida W, Saito Y, Takabayashi K, Hagiwara A, Takeshige-Amano H, Hatano T, Hattori N, Aoki S. Fiber-Specific White Matter Alterations in Parkinson's Disease Patients with GBA Gene Mutations. Mov Disord 2023; 38:2019-2030. [PMID: 37608502 DOI: 10.1002/mds.29578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) carrying GBA gene mutations (GBA-PD) have a more aggressive disease course than those with idiopathic PD (iPD). OBJECTIVE The objective of this study was to investigate fiber-specific white matter (WM) differences in nonmedicated patients with early-stage GBA-PD and iPD using fixel-based analysis, a novel technique to assess tract-specific WM microstructural and macrostructural features comprehensively. METHODS Fixel-based metrics, including microstructural fiber density (FD), macrostructural fiber-bundle cross section (FC), and a combination of FD and FC (FDC), were compared among 30 healthy control subjects, 16 patients with GBA-PD, and 35 patients with iPD. Associations between FDC and clinical evaluations were also explored using multiple linear regression analyses. RESULTS Patients with GBA-PD showed significantly lower FD in the fornix and superior longitudinal fasciculus than healthy control subjects, and lower FC in the corticospinal tract (CST) and lower FDC in the CST, middle cerebellar peduncle, and striatal-thalamo-cortical pathways than patients with iPD. Contrarily, patients with iPD showed significantly higher FC and FDC in the CST and striatal-thalamo-cortical pathways than healthy control subjects. In addition, lower FDC in patients with GBA-PD was associated with reduced glucocerebrosidase enzyme activity, lower cerebrospinal fluid total α-synuclein levels, lower Montreal Cognitive Assessment scores, lower striatal binding ratio, and higher Unified Parkinson's Disease Rating Scale Part III scores. CONCLUSIONS We report reduced fiber-specific WM density and bundle cross-sectional size in patients with GBA-PD, suggesting neurodegeneration linked to glucocerebrosidase deficiency, α-synuclein accumulation, and poorer cognition and motor functions. Conversely, patients with iPD showed increased fiber bundle size, likely because of WM reorganization. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Grants
- Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan
- JP21wm0425006 Japan Agency for Medical Research and Development
- 23H02865 Japan Society for the Promotion of Science
- 23K14927 Japan Society for the Promotion of Science
- PPMI - a public-private partnership - is funded by the Michael J. Fox Foundation for Parkinson's Research funding partners 4D Pharma, Abbvie, Acurex Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, Celgene, Dacapo Brain Science, Denali, The Edmond J. Safra Foundation, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Neuroscience, Lilly, Lundbeck, Merck, M
- JP18dm0307004 The Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development
- JP19dm0307101 The Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development
- The Juntendo Research Branding Project
- The Project for Training Experts in Statistical Sciences
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| |
Collapse
|
7
|
Huh YE, Usnich T, Scherzer CR, Klein C, Chung SJ. GBA1 Variants and Parkinson's Disease: Paving the Way for Targeted Therapy. J Mov Disord 2023; 16:261-278. [PMID: 37302978 PMCID: PMC10548077 DOI: 10.14802/jmd.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
Glucosylceramidase beta 1 (GBA1) variants have attracted enormous attention as the most promising and important genetic candidates for precision medicine in Parkinson's disease (PD). A substantial correlation between GBA1 genotypes and PD phenotypes could inform the prediction of disease progression and promote the development of a preventive intervention for individuals at a higher risk of a worse disease prognosis. Moreover, the GBA1-regulated pathway provides new perspectives on the pathogenesis of PD, such as dysregulated sphingolipid metabolism, impaired protein quality control, and disrupted endoplasmic reticulum-Golgi trafficking. These perspectives have led to the development of novel disease-modifying therapies for PD targeting the GBA1-regulated pathway by repositioning treatment strategies for Gaucher's disease. This review summarizes the current hypotheses on a mechanistic link between GBA1 variants and PD and possible therapeutic options for modulating GBA1-regulated pathways in PD patients.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Clemens R. Scherzer
- Advanced Center for Parkinson’s Disease Research, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Chahine LM, Simuni T. Role of novel endpoints and evaluations of response in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:325-345. [PMID: 36803820 DOI: 10.1016/b978-0-323-85555-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With progress in our understanding of Parkinson disease (PD) and other neurodegenerative disorders, from clinical features to imaging, genetic, and molecular characterization comes the opportunity to refine and revise how we measure these diseases and what outcome measures are used as endpoints in clinical trials. While several rater-, patient-, and milestone-based outcomes for PD exist that may serve as clinical trial endpoints, there remains an unmet need for endpoints that are clinically meaningful, patient centric while also being more objective and quantitative, less susceptible to effects of symptomatic therapy (for disease-modification trials), and that can be measured over a short period and yet accurately represent longer-term outcomes. Several novel outcomes that may be used as endpoints in PD clinical trials are in development, including digital measures of signs and symptoms, as well a growing array of imaging and biospecimen biomarkers. This chapter provides an overview of the state of PD outcome measures as of 2022, including considerations for selection of clinical trial endpoints in PD, advantages and limitations of existing measures, and emerging potential novel endpoints.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
9
|
Smith LJ, Bolsinger MM, Chau KY, Gegg ME, Schapira AHV. The GBA variant E326K is associated with alpha-synuclein aggregation and lipid droplet accumulation in human cell lines. Hum Mol Genet 2023; 32:773-789. [PMID: 36130205 PMCID: PMC9941838 DOI: 10.1093/hmg/ddac233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD. Although the E326K variant is one of the most common GBA variants associated with PD, there is limited understanding of its biochemical effects. We have characterized homozygous and heterozygous E326K variants in human fibroblasts. We found that E326K variants did not cause a significant loss of GCase protein or activity, endoplasmic reticulum (ER) retention or ER stress, in contrast to the L444P GBA mutation. This was confirmed in human dopaminergic SH-SY5Y neuroblastoma cell lines overexpressing GCase with either E326K or L444P protein. Despite no loss of the GCase activity, a significant increase in insoluble alpha-synuclein aggregates in E326K and L444P mutants was observed. Notably, SH-SY5Y overexpressing E326K demonstrated a significant increase in the lipid droplet number under basal conditions, which was exacerbated following treatment with the fatty acid oleic acid. Similarly, a significant increase in lipid droplet formation following lipid loading was observed in heterozygous and homozygous E326K fibroblasts. In conclusion, the work presented here demonstrates that the E326K mutation behaves differently to the common loss of function GBA mutations; however, lipid dyshomeostasis and alpha-synuclein pathology are still evident.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Magdalena M Bolsinger
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Division of Medicine, Friedrich-Alexander University Erlangen-Nurnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
10
|
Oftedal L, Maple-Grødem J, Dalen I, Tysnes OB, Pedersen KF, Alves G, Lange J. Association of CSF Glucocerebrosidase Activity With the Risk of Incident Dementia in Patients With Parkinson Disease. Neurology 2023; 100:e388-e395. [PMID: 36253102 PMCID: PMC9897053 DOI: 10.1212/wnl.0000000000201418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Variations in the glucocerebrosidase gene (GBA) are common risk factors for Parkinson disease (PD) and dementia in PD (PDD) and cause a reduction in the activity of the lysosomal enzyme glucocerebrosidase (GCase). It is anticipated that GCase dysfunction might contribute to a more malignant disease course and predict cognitive impairment in PD, although evidence is lacking. We aimed to discover whether CSF GCase activity is altered in newly diagnosed patients with PD and associated with future development of dementia. METHODS Patients with PD were participants of the ongoing population-based longitudinal ParkWest study in Southwestern Norway and were followed prospectively for up to 10 years. CSF was collected at diagnosis, and GBA carrier status was obtained. Control samples were from persons without neurodegenerative disorders. GCase activity was measured using a validated assay. PD dementia diagnosis was set according to the Movement Disorder Society criteria, and parametric accelerated failure time models were applied to analyze the association of GCase activity with dementia-free survival. RESULTS This study enrolled 117 patients with PD (mean age 67.2 years, including 12 GBA non-synonymous variant carriers) and 50 control participants (mean age 64 years). At the time of diagnosis, GCase activity was reduced in patients with PD with (mean ± SD, 0.92 ± 0.40 mU/mg, n = 12) or without GBA variations (1.00 ± 0.37 mU/mg, n = 105) compared with controls (1.20 ± 0.35, n = 50). GCase activity at the time of diagnosis was lower in patients with PD who developed dementia within 10 years (0.85 ± 0.27 mU/mg, n = 41) than in those who did not (1.07 ± 0.40 mU/mg, n = 76, p = 0.001). A 0.1-unit reduction in baseline GCase activity was associated with a faster development of PDD (hazard ratio 1.15, 95% CI 1.03-1.28, p = 0.014). DISCUSSION The association of early CSF GCase activity with long-term progression to PD dementia will have important implications for the design of clinical trials for GCase targeting therapies and patient management. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that reduced CSF GCase activity at the time of PD diagnosis is associated with an increased risk for later development of PDD.
Collapse
Affiliation(s)
- Linn Oftedal
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Jodi Maple-Grødem
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Ingvild Dalen
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Ole-Bjørn Tysnes
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Kenn Freddy Pedersen
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Guido Alves
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital
| | - Johannes Lange
- From the The Norwegian Centre for Movement Disorders (L.O., J.M.-G., K.F.P., G.A., J.L.), Stavanger University Hospital, Norway; Department of Chemistry, Bioscience and Environmental Engineering (J.M.-G., G.A., J.L.), University of Stavanger, Norway; Department of Research (I.D.), Section of Biostatistics, Stavanger University Hospital, Norway; Department of Neurology (O.-B.T.), Haukeland University Hospital, Bergen; Department of Clinical Medicine (O.-B.T.), University of Bergen, Norway; and Department of Neurology (K.F.P., G.A.), Stavanger University Hospital.
| |
Collapse
|
11
|
GBA1 Gene Mutations in α-Synucleinopathies-Molecular Mechanisms Underlying Pathology and Their Clinical Significance. Int J Mol Sci 2023; 24:ijms24032044. [PMID: 36768367 PMCID: PMC9917178 DOI: 10.3390/ijms24032044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggregation leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic treatment is available for these disorders, hence new approaches to their therapy are needed. It has been observed that GBA1 mutations are one of the most impactful risk factors for developing α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hydrolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly understood and need to be further investigated. Here, we discuss some of the potential interactions between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most prevalent α-synucleinopathies.
Collapse
|
12
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations and Parkinson disease. J Neural Transm (Vienna) 2022; 129:1105-1117. [PMID: 35932311 PMCID: PMC9463283 DOI: 10.1007/s00702-022-02531-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy-lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood-brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK.
| |
Collapse
|
13
|
Höglinger G, Schulte C, Jost WH, Storch A, Woitalla D, Krüger R, Falkenburger B, Brockmann K. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm (Vienna) 2022; 129:1219-1233. [PMID: 35639160 PMCID: PMC9463270 DOI: 10.1007/s00702-022-02511-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Given the clear role of GBA in the pathogenesis of Parkinson’s disease (PD) and its impact on phenotypical characteristics, this review provides an overview of the current knowledge of GBA-associated PD with a special focus on clinical trajectories and the underlying pathological mechanisms. Importantly, differences and characteristics based on mutation severity are recognized, and current as well as potential future treatment options are discussed. These findings will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures when designing clinical trials.
Collapse
Affiliation(s)
- Günter Höglinger
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Claudia Schulte
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center for Neurodegenerative Disease (DZNE), Tuebingen, Germany
| | | | - Alexander Storch
- Department of Neurology, Rostock University, Gehlsheimer Str. 20, 18147, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Katholische Kliniken Ruhrhalbinsel, Contilia Gruppe, Essen, Germany
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Björn Falkenburger
- Department of Neurology, Faculty of Medicine, University Hospital Carl Gustav Carus and Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany. .,German Center for Neurodegenerative Disease (DZNE), Tuebingen, Germany.
| |
Collapse
|
14
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
15
|
Ortega RA, Bodamer O, Peake RWA, Raymond D, Bressman SB, Saunders-Pullman R. Assessment of Glucocerebrosidase Enzyme Activity in Parkinson Disease Using Multiple Approaches. Mov Disord 2022; 37:655-656. [PMID: 35106836 PMCID: PMC9948675 DOI: 10.1002/mds.28951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
16
|
Usenko TS, Senkevich KA, Bezrukova AI, Baydakova GV, Basharova KS, Zhuravlev AS, Gracheva EV, Kudrevatykh AV, Miliukhina IV, Krasakov IV, Khublarova LA, Fursova IV, Zakharov DV, Timofeeva AA, Irishina YA, Palchikova EI, Zalutskaya NM, Emelyanov AK, Zakharova EY, Pchelina SN. Impaired Sphingolipid Hydrolase Activities in Dementia with Lewy Bodies and Multiple System Atrophy. Mol Neurobiol 2022; 59:2277-2287. [PMID: 35066761 DOI: 10.1007/s12035-021-02688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
The synucleinopathies are a group of neurodegenerative diseases characterized by the oligomerization of alpha-synuclein protein in neurons or glial cells. Recent studies provide data that ceramide metabolism impairment may play a role in the pathogenesis of synucleinopathies due to its influence on alpha-synuclein accumulation. The aim of the current study was to assess changes in activities of enzymes involved in ceramide metabolism in patients with different synucleinopathies (Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA)). The study enrolled 163 PD, 44 DLB, and 30 MSA patients as well as 159 controls. Glucocerebrosidase, alpha-galactosidase, acid sphingomyelinase enzyme activities, and concentrations of the corresponding substrates (hexosylsphingosine, globotriaosylsphingosine, lysosphingomyelin) were measured by liquid chromatography tandem-mass spectrometry in blood. Expression levels of GBA, GLA, and SMPD1 genes encoding glucoceresobridase, alpha-galactosidase, and acid sphingomyelinase enzymes, correspondently, were analyzed by real-time PCR with TaqMan assay in CD45 + blood cells. Increased hexosylsphingosine concentration was observed in DLB and MSA patients in comparison to PD and controls (p < 0.001) and it was associated with earlier age at onset (AAO) of DLB (p = 0.0008). SMPD1 expression was decreased in MSA compared to controls (p = 0.015). Acid sphingomyelinase activity was decreased in DLB, MSA patients compared to PD patients (p < 0.0001, p < 0.0001, respectively), and in MSA compared to controls (p < 0.0001). Lower acid sphingomyelinase activity was associated with earlier AAO of PD (p = 0.012). Our data support the role of lysosomal dysfunction in the pathogenesis of synucleinopathies, namely, the pronounced alterations of lysosomal activities involved in ceramide metabolism in patients with MSA and DLB.
Collapse
Affiliation(s)
- T S Usenko
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia. .,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.
| | - K A Senkevich
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - A I Bezrukova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - G V Baydakova
- Research Center for Medical Genetics, Moskvorechie str. 1, Moscow, 115478, Russia
| | - K S Basharova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - A S Zhuravlev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - E V Gracheva
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - A V Kudrevatykh
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - I V Miliukhina
- Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.,Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - I V Krasakov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, Optikov str. 54, 197082, St. Petersburg, Russia
| | - L A Khublarova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - I V Fursova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - D V Zakharov
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - Y A Irishina
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - E I Palchikova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - N M Zalutskaya
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moskvorechie str. 1, Moscow, 115478, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.,Institute of Experimental Medicine, 12, Acad. Pavlov Str, 197376, Saint-Petersburg, Russia
| |
Collapse
|
17
|
Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, Glinka T, Goldstein O, Kestenbaum M, Cedarbaum JM, Mabrouk OS, Fraser KB, Shirvan JC, Orr-Urtreger A, Mirelman A, Thaler A. Glucocerebrosidase Activity Is Not Associated with Parkinson's Disease Risk or Severity. Mov Disord 2022; 37:651-652. [PMID: 35064687 DOI: 10.1002/mds.28929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Bar-Shira
- Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Mali Gana-Weisz
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Tal Glinka
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Orly Goldstein
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Meir Kestenbaum
- Neurology Department, Meir Medical Center, Kfar-Saba, Israel
| | - Jesse M Cedarbaum
- Biogen Inc, Cambridge, Massachusetts, USA.,Coeruleus Clinical Sciences LLC, Woodbridge, Connecticut, USA
| | | | | | | | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
Ysselstein D, Young TJ, Nguyen M, Padmanabhan S, Hirst WD, Dzamko N, Krainc D. Evaluation of Strategies for Measuring Lysosomal Glucocerebrosidase Activity. Mov Disord 2021; 36:2719-2730. [PMID: 34613624 PMCID: PMC8853444 DOI: 10.1002/mds.28815] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in GBA1, which encode for the protein glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease and dementia with Lewy bodies. In addition, growing evidence now suggests that the loss of GCase activity is also involved in onset of all forms of Parkinson's disease, dementia with Lewy bodies, and other dementias, such as progranulin-linked frontal temporal dementia. As a result, there is significant interest in developing GCase-targeted therapies that have the potential to stop or slow progression of these diseases. Despite this interest in GCase as a therapeutic target, there is significant inconsistency in the methodology for measuring GCase enzymatic activity in disease-modeling systems and patient populations, which could hinder progress in developing GCase therapies. In this review, we discuss the different strategies that have been developed to assess GCase activity and highlight the specific strengths and weaknesses of these approaches as well as the gaps that remain. We also discuss the current and potential role of these different methodologies in preclinical and clinical development of GCase-targeted therapies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Tiffany J. Young
- Ken and Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | | | - Warren D. Hirst
- Neurodegenerative Diseases Research UnitBiogenCambridgeMassachusettsUSA
| | - Nicolas Dzamko
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Dimitri Krainc
- Ken and Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
19
|
Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, Glinka T, Goldstein O, Kestenbaum M, Cedarbaum JM, Mabrouk OS, Fraser KB, Shirvan JC, Orr-Urtreger A, Mirelman A, Thaler A. Glucocerebrosidase Activity is not Associated with Parkinson's Disease Risk or Severity. Mov Disord 2021; 37:190-195. [PMID: 34550621 PMCID: PMC9292990 DOI: 10.1002/mds.28792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
Background Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are risk factors for Parkinson's disease (PD). Objective To explore the association between GCase activity, PD phenotype, and probability for prodromal PD among carriers of mutations in the GBA and LRRK2 genes. Methods Participants were genotyped for the G2019S‐LRRK2 and nine GBA mutations common in Ashkenazi Jews. Performance‐based measures enabling the calculation of the Movement Disorder Society (MDS) prodromal probability score were collected. Results One hundred and seventy PD patients (102 GBA‐PD, 38 LRRK2‐PD, and 30 idiopathic PD) and 221 non‐manifesting carriers (NMC) (129 GBA‐NMC, 45 LRRK2‐NMC, 15 GBA‐LRRK2‐NMC, and 32 healthy controls) participated in this study. GCase activity was lower among GBA‐PD (3.15 ± 0.85 μmol/L/h), GBA‐NMC (3.23 ± 0.91 μmol/L/h), and GBA‐LRRK2‐NMC (3.20 ± 0.93 μmol/L/h) compared to the other groups of participants, with no correlation to clinical phenotype. Conclusions Low GCase activity does not explain the clinical phenotype or risk for prodromal PD in this cohort. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Bar-Shira
- Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Mali Gana-Weisz
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Tal Glinka
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Orly Goldstein
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Meir Kestenbaum
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neurology Department, Meir Medical Center, Kfar-Saba, Israel
| | - Jesse M Cedarbaum
- Biogen Inc., Cambridge, Massachusetts, USA.,Coeruleus Clinical Sciences LLC, Woodbridge, Connecticut, USA
| | | | | | | | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
Hughes LP, Pereira MMM, Hammond DA, Kwok JB, Halliday GM, Lewis SJG, Dzamko N. Glucocerebrosidase Activity is Reduced in Cryopreserved Parkinson's Disease Patient Monocytes and Inversely Correlates with Motor Severity. JOURNAL OF PARKINSONS DISEASE 2021; 11:1157-1165. [PMID: 33935104 PMCID: PMC8461681 DOI: 10.3233/jpd-202508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Reduced activity of lysosomal glucocerebrosidase is found in brain tissue from Parkinson’s disease patients. Glucocerebrosidase is also highly expressed in peripheral blood monocytes where its activity is decreased in Parkinson’s disease patients, even in the absence of GBA mutation. Objective: To measure glucocerebrosidase activity in cryopreserved peripheral blood monocytes from 30 Parkinson’s disease patients and 30 matched controls and identify any clinical correlation with disease severity. Methods: Flow cytometry was used to measure lysosomal glucocerebrosidase activity in total, classical, intermediate, and non-classical monocytes. All participants underwent neurological examination and motor severity was assessed by the Movement Disorders Society Unified Parkinson’s Disease Rating Scale. Results: Glucocerebrosidase activity was significantly reduced in the total and classical monocyte populations from the Parkinson’s disease patients compared to controls. GCase activity in classical monocytes was inversely correlated to motor symptom severity. Conclusion: Significant differences in monocyte glucocerebrosidase activity can be detected in Parkinson’s disease patients using cryopreserved mononuclear cells and monocyte GCase activity correlated with motor features of disease. Being able to use cryopreserved cells will facilitate the larger multi-site trials needed to validate monocyte GCase activity as a Parkinson’s disease biomarker.
Collapse
Affiliation(s)
- Laura P Hughes
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| | - Marilia M M Pereira
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| | - Deborah A Hammond
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| | - John B Kwok
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| | - Nicolas Dzamko
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney School of Medical Sciences, Camperdown, NSW, Australia
| |
Collapse
|
21
|
Sosero YL, Yu E, Krohn L, Rudakou U, Mufti K, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Sardi SP, Bandres-Ciga S, Alcalay RN, Gan-Or Z, Senkevich K. LRRK2 p.M1646T is associated with glucocerebrosidase activity and with Parkinson's disease. Neurobiol Aging 2021; 103:142.e1-142.e5. [PMID: 33781610 DOI: 10.1016/j.neurobiolaging.2021.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
The LRRK2 p.G2019S Parkinson's disease (PD) variant is associated with elevated glucocerebrosidase (GCase) activity in peripheral blood. We aimed to evaluate the association of other LRRK2 variants with PD and its association with GCase activity. LRRK2 and GBA were fully sequenced in 1123 PD patients and 576 controls from the Columbia and PPMI cohorts, in which GCase activity was measured in dried blood spots by liquid chromatography-tandem mass spectrometry. LRRK2 p.M1646T was associated with increased GCase activity in the Columbia University cohort (β = 1.58, p = 0.0003), and increased but not significantly in the PPMI cohort (β = 0.29, p = 0.58). p.M1646T was associated with PD (odds ratio = 1.18, 95% confidence interval = 1.09-1.28, p = 7.33E-05) in 56,306 PD patients and proxy-cases, and 1.4 million controls. Our results suggest that the p.M1646T variant is associated with risk of PD with a small effect and with increased GCase activity in peripheral blood.
Collapse
Affiliation(s)
- Yuri L Sosero
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Lynne Krohn
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Kheireddin Mufti
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Sandra B Laurent
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, Framingham, MA, USA
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Konstantin Senkevich
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
22
|
Lerche S, Schulte C, Wurster I, Machetanz G, Roeben B, Zimmermann M, Deuschle C, Hauser AK, Böhringer J, Krägeloh-Mann I, Waniek K, Lachmann I, Petterson XMT, Chiang R, Park H, Wang B, Liepelt-Scarfone I, Maetzler W, Galasko D, Scherzer CR, Gasser T, Mielke MM, Hutten SJ, Mollenhauer B, Sardi SP, Berg D, Brockmann K. The Mutation Matters: CSF Profiles of GCase, Sphingolipids, α-Synuclein in PD GBA. Mov Disord 2021; 36:1216-1228. [PMID: 33547828 DOI: 10.1002/mds.28472] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With pathway-specific trials in PD associated with variants in the glucocerebrosidase gene (PDGBA ) under way, we need markers that confirm the impact of genetic variants in patient-derived biofluids in order to allow patient stratification merely based on genetics and that might serve as biochemical read-out for target engagement. OBJECTIVE To explore GBA-pathway-specific biomarker profiles cross-sectionally (TUEPAC-MIGAP, PPMI) and longitudinally (PPMI). METHODS We measured enzyme activity of the lysosomal glucocerebrosidase, CSF levels of glucosylceramides (upstream substrate of glucocerebrosidase), CSF levels of ceramides (downstream product of glucocerebrosidase), lactosylceramides, sphingosines, sphingomyelin (by-products) and CSF levels of total α-synuclein in PDGBA patients compared to PDGBA_wildtype patients. RESULTS Cross-sectionally in both cohorts and longitudinally in PPMI: (1) glucocerebrosidase activity was significantly lower in PDGBA compared to PDGBA_wildtype . (2) CSF levels of upstream substrates (glucosylceramides species) were higher in PDGBA compared to PDGBA_wildtype . (3) CSF levels of total α-synuclein were lower in PDGBA compared to PDGBA_wildtype . All of these findings were most pronounced in PDGBA with severe mutations (PDGBA_severe ). Cross-sectionally in TUEPAC-MIGAP and longitudinally in PPMI, CSF levels of downstream-products (ceramides) were higher in PDGBA_severe . Cross-sectionally in TUEPAC-MIGAP by-products sphinganine and sphingosine-1-phosphate and longitudinally in PPMI species of by-products lactosylceramides and sphingomyelin were higher in PDGBA_severe . INTERPRETATION These findings confirm that GBA mutations have a relevant functional impact on biomarker profiles in patients. Bridging the gap between genetics and biochemical profiles now allows patient stratification for clinical trials merely based on mutation status. Importantly, all findings were most prominent in PDGBA with severe variants. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefanie Lerche
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Claudia Schulte
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Isabel Wurster
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Gerrit Machetanz
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Benjamin Roeben
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Christian Deuschle
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Ann-Kathrin Hauser
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | | | | | | | | | - Xuan-Mai T Petterson
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ruby Chiang
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Cambridge, Massachusetts, USA
| | - Hyejung Park
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Cambridge, Massachusetts, USA
| | - Bing Wang
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Cambridge, Massachusetts, USA
| | - Inga Liepelt-Scarfone
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Douglas Galasko
- Department of Neurology, University of California at San Diego, San Diego, California, USA
| | - Clemens R Scherzer
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Thomas Gasser
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| | - Michelle M Mielke
- Department of Health Sciences Research and Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Samantha J Hutten
- Michel J. Fox Foundation for Parkinson's Research (MJFF), New York, New York, USA
| | - Brit Mollenhauer
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Paracelsus-Elena Klinik Kassel, Kassel, Germany.,Department of Neurology, University Medical Center Goettingen, Göttingen, Germany
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Cambridge, Massachusetts, USA
| | - Daniela Berg
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tuebingen, Germany
| |
Collapse
|