1
|
Borrego–Écija S, Pérez‐Millan A, Antonell A, Fort‐Aznar L, Kaya‐Tilki E, León‐Halcón A, Lladó A, Molina‐Porcel L, Balasa M, Juncà‐Parella J, Vitorica J, Venero JL, Deierborg T, Boza‐Serrano A, Sánchez‐Valle R. Galectin-3 is upregulated in frontotemporal dementia patients with subtype specificity. Alzheimers Dement 2024; 20:1515-1526. [PMID: 38018380 PMCID: PMC10984429 DOI: 10.1002/alz.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.
Collapse
Affiliation(s)
- Sergi Borrego–Écija
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Agnès Pérez‐Millan
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Institut of Neurosciences. Faculty of Medicine and Medical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Laura Fort‐Aznar
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Elif Kaya‐Tilki
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
| | - Alberto León‐Halcón
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Albert Lladó
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Institut of Neurosciences. Faculty of Medicine and Medical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Laura Molina‐Porcel
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Mircea Balasa
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Jordi Juncà‐Parella
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
| | - Javier Vitorica
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Tomas Deierborg
- Department of Experimental Medical Sciences, Experimental Neuroinflammatory LabLund UniversityLundSweden
| | - Antonio Boza‐Serrano
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad de Sevilla, Sevilla, SpainSevillaSpain
- Instituto de Biomedicina de SevillaIBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Raquel Sánchez‐Valle
- Alzheimer's disease and other cognitive disorders Unit. Service of Neurology, Fundació Recerca Clínic Barcelona‐IDIBAPSHospital Clínic de BarcelonaBarcelonaSpain
- Institut of Neurosciences. Faculty of Medicine and Medical SciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Hsiao-Nakamoto J, Chiu CL, VandeVrede L, Ravi R, Vandenberg B, De Groot J, Tsogtbaatar B, Fang M, Auger P, Gould NS, Marchioni F, Powers CA, Davis SS, Suh JH, Alkabsh J, Heuer HW, Lago AL, Scearce-Levie K, Seeley WW, Boeve BF, Rosen HJ, Berger A, Tsai R, Di Paolo G, Boxer AL, Bhalla A, Huang F. Alterations in Lysosomal, Glial and Neurodegenerative Biomarkers in Patients with Sporadic and Genetic Forms of Frontotemporal Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579529. [PMID: 38405775 PMCID: PMC10888909 DOI: 10.1101/2024.02.09.579529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.
Collapse
Affiliation(s)
- Jennifer Hsiao-Nakamoto
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Brittany Vandenberg
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Brittany Vandenberg, Washington State University, Pullman, WA 99164, USA
| | - Jack De Groot
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Jack DeGroot: Prime Medicine Inc., Cambridge, MA 02139, USA
| | | | - Meng Fang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Paul Auger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Paul Auger: Nurix Therapeutics, San Francisco, CA 94158, USA
| | - Neal S Gould
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Filippo Marchioni
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Casey A Powers
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Casey A. Powers: Stanford University, Stanford, CA 94305, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jung H Suh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jamal Alkabsh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Kimberly Scearce-Levie: Cajal Neuroscience, Seattle, WA 98109, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Berger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Richard Tsai
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Gilbert Di Paolo
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
- These authors contributed equally
| | - Akhil Bhalla
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Fen Huang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| |
Collapse
|
3
|
Johnson AM, Lukens JR. The innate immune response in tauopathies. Eur J Immunol 2023; 53:e2250266. [PMID: 36932726 PMCID: PMC10247424 DOI: 10.1002/eji.202250266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Tauopathies, which include frontotemporal dementia, Alzheimer's disease, and chronic traumatic encephalopathy, are a class of neurological disorders resulting from pathogenic tau aggregates. These aggregates disrupt neuronal health and function leading to the cognitive and physical decline of tauopathy patients. Genome-wide association studies and clinical evidence have brought to light the large role of the immune system in inducing and driving tau-mediated pathology. More specifically, innate immune genes are found to harbor tauopathy risk alleles, and innate immune pathways are upregulated throughout the course of disease. Experimental evidence has expanded on these findings by describing pivotal roles for the innate immune system in the regulation of tau kinases and tau aggregates. In this review, we summarize the literature implicating innate immune pathways as drivers of tauopathy.
Collapse
Affiliation(s)
- Alexis M. Johnson
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, Wang Y, Wang Y, Qu M, Wang N, Wu L. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation 2023; 20:65. [PMID: 36890594 PMCID: PMC9996857 DOI: 10.1186/s12974-023-02746-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a significant role in the progression of frontotemporal dementia (FTD). However, the association between peripheral inflammatory factors and brain neurodegeneration is poorly understood. We aimed to examine changes in peripheral inflammatory markers in patients with behavioural variant FTD (bvFTD) and explore the potential association between peripheral inflammation and brain structure, metabolism, and clinical parameters. METHODS Thirty-nine bvFTD patients and 40 healthy controls were enrolled and underwent assessment of plasma inflammatory factors, positron emission tomography/magnetic resonance imaging, and neuropsychological assessments. Group differences were tested using Student's t test, Mann‒Whitney U test, or ANOVA. Partial correlation analysis and multivariable regression analysis were implemented using age and sex as covariates to explore the association between peripheral inflammatory markers, neuroimaging, and clinical measures. The false discovery rate was used to correct for the multiple correlation test. RESULTS Plasma levels of six factors, including interleukin (IL)-2, IL-12p70, IL-17A, tumour necrosis superfamily member 13B (TNFSF/BAFF), TNFSF12 (TWEAK), and TNFRSF8 (sCD30), were increased in the bvFTD group. Five factors were significantly associated with central degeneration, including IL-2, IL-12p70, IL-17A, sCD30/TNFRSF8, and tumour necrosis factor (TNF)-α; the association between inflammation and brain atrophy was mainly distributed in frontal-limbic-striatal brain regions, whereas the association with brain metabolism was mainly in the frontal-temporal-limbic-striatal regions. BAFF/TNFSF13B, IL-4, IL-6, IL-17A and TNF-α were found to correlate with clinical measures. CONCLUSION Peripheral inflammation disturbance in patients with bvFTD participates in disease-specific pathophysiological mechanisms, which could be a promising target for diagnosis, treatment, and monitoring therapeutic efficacy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|