1
|
Dash BP, Freischmidt A, Helferich AM, Ludolph AC, Andersen PM, Weishaupt JH, Hermann A. Upregulated miR-10b-5p as a potential miRNA signature in amyotrophic lateral sclerosis patients. Front Cell Neurosci 2024; 18:1457704. [PMID: 39588282 PMCID: PMC11586771 DOI: 10.3389/fncel.2024.1457704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset disease marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Death in most patients usually occurs within 2-4 years after symptoms onset. Despite promising progress in delineating underlying mechanisms, such as disturbed proteostasis, DNA/RNA metabolism, splicing or proper nucleocytoplasmic shuttling, there are no effective therapies for the vast majority of cases. A reason for this might be the disease heterogeneity and lack of substantial clinical and molecular biomarkers. The identification and validation of such pathophysiology driven biomarkers could be useful for early diagnosis and treatment stratification. Recent advances in next generation RNA-sequencing approaches have provided important insights to identify key changes of non-coding RNAs (ncRNAs) implicated with ALS disease. Especially, microRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression to target several genes/pathways by degrading messenger RNAs (mRNAs) or repressing levels of gene expression. In this study, we expand our previous work to identify top-regulated differentially expressed (DE)-miRNAs by combining different normalizations to search for important and generalisable pathomechanistic dysregulations in ALS as putative novel biomarkers of the disease. For this we performed a consensus pipeline of existing datasets to investigate the transcriptomic profile (mRNAs and miRNAs) of MN cell lines from iPSC-derived SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to identify potential signatures and their related pathways associated with neurodegeneration. Transcriptional profiling of miRNA-mRNA interactions from MN cell lines in ALS patients revealed differential expression of genes showed greater vulnerability to KEAP1-NRF2 stress response pathway, sharing a common molecular denominator linked to both disease conditions. We also reported that mutations in above genes led to significant upregulation of the top candidate miR-10b-5p, which we could validate in immortalized lymphoblast cell lines (LCLs) derived from sporadic and familial ALS patients and postmortem tissues of familial ALS patients. Collectively, our findings suggest that miRNA analysis simultaneously performed in various human biological samples may reveal shared miRNA profiles potentially useful as a biomarker of the disease.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | | | | | - Albert C. Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
2
|
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:11838. [PMID: 39519389 PMCID: PMC11546606 DOI: 10.3390/ijms252111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review explores the current landscape of blood biomarkers in Frontotemporal dementia (FTD). Neurofilament light chain (NfL) may be useful in the differentiation of behavioral variant FTD from primary psychiatric disorders (PPDs) or dementia with Lewy bodies (DLB). In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), elevated NfL may herald pheno-conversion to full-blown dementia. Baseline NfL correlates with steeper neuroanatomical changes and cognitive, behavioral and functional decline, making NfL promising in monitoring disease progression. Phosphorylated neurofilament heavy chain (pNfH) levels have a potential limited role in the demarcation of the conversion stage to full-blown FTD. Combined NfL and pNfH measurements may allow a wider stage stratification. Total tau levels lack applicability in the framework of FTD. p-tau, on the other hand, is of potential value in the discrimination of FTD from Alzheimer's dementia. Progranulin concentrations could serve the identification of GRN mutation carriers. Glial fibrillary acidic protein (GFAP) may assist in the differentiation of PPDs from behavioral variant FTD and the detection of GRN mutation carriers (additional research is warranted). Finally, TAR DNA-binding protein-43 (TDP-43) appears to be a promising diagnostic biomarker for FTD. Its potential in distinguishing TDP-43 pathology from other FTD-related pathologies requires further research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | | | - Vasiliki Karakoida
- School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (V.K.); (P.A.K.)
| | | | - Markos Sgantzos
- Department of Anatomy, Medical School, University of Thessaly, 41100 Larissa, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| |
Collapse
|
3
|
Mishra S, Stany B, Das A, Kanagavel D, Vijayan M. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer's Disease. Mol Neurobiol 2024; 61:8739-8758. [PMID: 38558361 DOI: 10.1007/s12035-024-04135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer's disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Shatakshi Mishra
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - B Stany
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Anushka Das
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Deepankumar Kanagavel
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
4
|
Lauria G, Curcio R, Tucci P. A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression. Biomolecules 2023; 14:47. [PMID: 38254647 PMCID: PMC10813207 DOI: 10.3390/biom14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. The early diagnosis of ALS can be challenging, as it usually depends on clinical examination and the exclusion of other possible causes. In this regard, the analysis of miRNA expression profiles in biofluids makes miRNAs promising non-invasive clinical biomarkers. Due to the increasing amount of scientific literature that often provides controversial results, this work aims to deepen the understanding of the current state of the art on this topic using a machine-learning-based approach. A systematic literature search was conducted to analyze a set of 308 scientific articles using the MySLR digital platform and the Latent Dirichlet Allocation (LDA) algorithm. Two relevant topics were identified, and the articles clustered in each of them were analyzed and discussed in terms of biomolecular mechanisms, as well as in translational and clinical settings. Several miRNAs detected in the tissues and biofluids of ALS patients, including blood and cerebrospinal fluid (CSF), have been linked to ALS diagnosis and progression. Some of them may represent promising non-invasive clinical biomarkers. In this context, future scientific priorities and goals have been proposed.
Collapse
Affiliation(s)
| | - Rosita Curcio
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| | - Paola Tucci
- Correspondence: (R.C.); (P.T.); Tel.: +39-0984493046 (R.C.); +39-0984493185 (P.T.)
| |
Collapse
|
5
|
Gomes BC, Peixinho N, Pisco R, Gromicho M, Pronto-Laborinho AC, Rueff J, de Carvalho M, Rodrigues AS. Differential Expression of miRNAs in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:7104-7117. [PMID: 37531027 PMCID: PMC10657797 DOI: 10.1007/s12035-023-03520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that affects nerve cells in the brain and spinal cord, causing loss of muscle control, muscle atrophy and in later stages, death. Diagnosis has an average delay of 1 year after symptoms onset, which impairs early management. The identification of a specific disease biomarker could help decrease the diagnostic delay. MicroRNA (miRNA) expression levels have been proposed as ALS biomarkers, and altered function has been reported in ALS pathogenesis. The aim of this study was to assess the differential expression of plasma miRNAs in ALS patients and two control populations (healthy controls and ALS-mimic disorders). For that, 16 samples from each group were pooled, and then 1008 miRNAs were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). From these, ten candidate miRNAs were selected and validated in 35 ALS patients, 16 ALS-mimic disorders controls and 15 healthy controls. We also assessed the same miRNAs in two different time points of disease progression. Although we were unable to determine a miRNA signature to use as disease or condition marker, we found that miR-7-2-3p, miR-26a-1-3p, miR-224-5p and miR-206 are good study candidates to understand the pathophysiology of ALS.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Nuno Peixinho
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Pisco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria CHULN, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|