1
|
Gunasekaran TI, Reyes‐Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak‐Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and loss-of-function variants at GWAS loci in familial Alzheimer's disease. Alzheimers Dement 2024; 20:7580-7594. [PMID: 39233587 PMCID: PMC11567820 DOI: 10.1002/alz.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. DISCUSSION Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. HIGHLIGHTS Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.
Collapse
Affiliation(s)
- Tamil Iniyan Gunasekaran
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Dolly Reyes‐Dumeyer
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Kelley M. Faber
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of MedicineIndianapolisIndianaUSA
| | - Alison Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiIcahn Bldg., One Gustave L. Levy PlaceNew YorkNew YorkUSA
| | - Brad Boeve
- Department of Neurology, Mayo ClinicRochesterMinnesotaUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. Louis, Rand Johnson Building, 600 S Euclid Ave., Wohl Hospital BuildingSt. LouisMissouriUSA
| | - Margaret Pericak‐Vance
- John P Hussman Institute for Human GenomicsDr. John T Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational Biology. Case Western Reserve UniversityClevelandOhioUSA
| | - Roger Rosenberg
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Debby Tsuang
- Department of Psychiatry and Behavioral SciencesUniversity of Washington, GRECC VA Puget Sound, 1660 South Columbian WaySeattleWashingtonUSA
| | - Diones Rivera Mejia
- Los Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y TelemedicinaCEDIMAT, Arturo LogroñoPlaza de la Salud, Dr. Juan Manuel Taveras Rodríguez, C. Pepillo Salcedo esqSanto DomingoDominican Republic
- Universidad Pedro Henríquez Urena, Av. John F. Kennedy Km. 7‐1/2 Santo Domingo 1423Santo DomingoDominican Republic
| | - Martin Medrano
- Pontíficia Universidad Católica Madre y Maestra (PUCMM), Autopista Duarte Km 1 1/2Santiago de los CaballerosDominican Republic
| | - Rafael A. Lantigua
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Department of MedicineVagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Robert A. Sweet
- Departments of Psychiatry and NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical Center, 1750, West Harrison StChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease CenterRush University Medical Center, 1750, West Harrison StChicagoIllinoisUSA
| | - Camille Alba
- Department of AnatomyPhysiology and GeneticsUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Clifton Dalgard
- Department of AnatomyPhysiology and GeneticsUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of MedicineIndianapolisIndianaUSA
| | - Badri N. Vardarajan
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Richard Mayeux
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
2
|
Jensen AMG, Raska J, Fojtik P, Monti G, Lunding M, Bartova S, Pospisilova V, van der Lee SJ, Van Dongen J, Bossaerts L, Van Broeckhoven C, Dols-Icardo O, Lléo A, Bellini S, Ghidoni R, Hulsman M, Petsko GA, Sleegers K, Bohaciakova D, Holstege H, Andersen OM. The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2408262121. [PMID: 39226352 PMCID: PMC11406263 DOI: 10.1073/pnas.2408262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
Collapse
Affiliation(s)
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Giulia Monti
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Liene Bossaerts
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Oriol Dols-Icardo
- Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
| | - Alberto Lléo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08025, Barcelona, Spain
| | - Sonia Bellini
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| |
Collapse
|
3
|
Gunasekaran TI, Reyes-Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak-Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and Loss of Function Variants at GWAS Loci in Familial Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.18.23300145. [PMID: 38196599 PMCID: PMC10775337 DOI: 10.1101/2023.12.18.23300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome wide association studies of Alzheimer's disease (AD), limiting understanding of mechanisms and risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in The NIA Alzheimer's Disease Family Based Study, and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss of function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) of families APOE-e4 was the only variant segregating. However, in 60.3% of families neither APOE-e4 nor missense or LoF variants were found within the GWAS loci. DISCUSSION Although APOE-ε4 and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants.
Collapse
|