1
|
Delafontaine S, Iannuzzo A, Bigley TM, Mylemans B, Rana R, Baatsen P, Poli MC, Rymen D, Jansen K, Mekahli D, Casteels I, Cassiman C, Demaerel P, Lepelley A, Frémond ML, Schrijvers R, Bossuyt X, Vints K, Huybrechts W, Tacine R, Willekens K, Corveleyn A, Boeckx B, Baggio M, Ehlers L, Munck S, Lambrechts D, Voet A, Moens L, Bucciol G, Cooper MA, Davis CM, Delon J, Meyts I. Heterozygous mutations in the C-terminal domain of COPA underlie a complex autoinflammatory syndrome. J Clin Invest 2024; 134:e163604. [PMID: 38175705 PMCID: PMC10866661 DOI: 10.1172/jci163604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.
Collapse
Affiliation(s)
- Selket Delafontaine
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Alberto Iannuzzo
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Tarin M. Bigley
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bram Mylemans
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Ruchit Rana
- Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core, KU Leuven, Leuven, Belgium
| | - Maria Cecilia Poli
- Department of Pediatrics, Clínica Alemana de Santiago, Universidad del Desarollo, Santiago, Chile
- Immunology and Rheumatology Unit, Hospital de Niños Dr. Roberto del Rio, Santiago, Chile
| | - Daisy Rymen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology
| | | | | | - Philippe Demaerel
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Alice Lepelley
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
| | - Marie-Louise Frémond
- Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, Paris, France
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP.Centre - Université Paris Cité, Paris, France
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, and
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform of VIB Bio Imaging Core, KU Leuven, Leuven, Belgium
| | - Wim Huybrechts
- Center for Human Genetics, Leuven University Hospitals, Leuven, Belgium
| | - Rachida Tacine
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Karen Willekens
- Center for Human Genetics, Leuven University Hospitals, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, Leuven University Hospitals, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Marco Baggio
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lisa Ehlers
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core and VIB–KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Carla M. Davis
- Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Jérôme Delon
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Simchoni N, Vogel TP, Shum AK. COPA Syndrome from Diagnosis to Treatment: A Clinician's Guide. Rheum Dis Clin North Am 2023; 49:789-804. [PMID: 37821196 PMCID: PMC10866555 DOI: 10.1016/j.rdc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
COPA syndrome is a recently described autosomal dominant inborn error of immunity characterized by high titer autoantibodies and interstitial lung disease, with many individuals also having arthritis and nephritis. Onset is usually in early childhood, with unique disease features including alveolar hemorrhage, which can be insidious, pulmonary cyst formation, and progressive pulmonary fibrosis in nonspecific interstitial pneumonia or lymphocytic interstitial pneumonia patterns. This review explores the clinical presentation, genetics, molecular mechanisms, organ manifestations, and treatment approaches for COPA syndrome, and presents a diagnostic framework of suggested indications for patient testing.
Collapse
Affiliation(s)
- Noa Simchoni
- Pulmonary Division, Department of Medicine, University of California, San Francisco, 555 Mission Bay Boulevard South, CVRI 284F, Box 3118, San Francisco, CA 94158, USA
| | - Tiphanie P Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Avenue Suite 330, Houston, TX 77030, USA
| | - Anthony K Shum
- Pulmonary Division, Department of Medicine, University of California, San Francisco, 555 Mission Bay Boulevard South, CVRI 284F, Box 3118, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Boulevard South, CVRI 284F, Box 3118, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Miner JJ, Fitzgerald KA. A path towards personalized medicine for autoinflammatory and related diseases. Nat Rev Rheumatol 2023; 19:182-189. [PMID: 36750685 PMCID: PMC9904876 DOI: 10.1038/s41584-022-00904-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 02/09/2023]
Abstract
The human genome project led to the advancement of genetic technologies and genomic medicine for a variety of human diseases, including monogenic autoimmune and autoinflammatory diseases. As a result, the genome of an individual can now be rapidly sequenced at a low cost, and this technology is beginning to change the practice of rheumatology. In this Perspective, we describe how new sequencing technologies combined with careful clinical phenotyping have led to the discovery of rare rheumatic diseases and their corresponding disease-causing mutations. Additionally, we explore ways in which single-gene mutations, including somatic mutations, are creating opportunities to develop personalized medicines. To illustrate this idea, we focus on diseases affecting the TREX1-cGAS-STING pathway, which is associated with monogenic autoinflammatory diseases and vasculopathies. For many of the affected patients and families, there is an urgent, unmet need for the development of personalized therapies. New innovations related to small molecular inhibitors and gene therapies have the potential to benefit these families, and might help drive further innovations that could prove useful for patients with more common forms of autoimmunity and autoinflammation.
Collapse
Affiliation(s)
- Jonathan J Miner
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Nguyen HN, Salman R, Vogel TP, Silva-Carmona M, DeGuzman M, Guillerman RP. Imaging findings of COPA Syndrome. Pediatr Radiol 2023; 53:844-853. [PMID: 36746811 DOI: 10.1007/s00247-023-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Autosomal dominant mutations in the coatomer-associated protein alpha (COPA) gene cause an immune dysregulation disorder associated with pulmonary hemorrhage, lymphoid hyperplasia, arthritis, and glomerulonephritis. OBJECTIVE To describe the thoracic, musculoskeletal, and renal imaging findings of COPA syndrome with a focus on the evolution of the pulmonary findings. MATERIALS AND METHODS With approval of the Institutional Review Board, consensus retrospective review of findings on chest radiography and computed tomography (CT), musculoskeletal radiography and magnetic resonance imaging (MRI), and renal ultrasound (US) was performed for pediatric COPA syndrome patients. COPA syndrome patients < 18 years of age presenting between 1992 and 2019 were identified from an institutional rheumatology registry. RESULTS Twelve pediatric COPA syndrome patients (mean age of 6.5 years at first imaging exam; 6 females) were identified. Imaging exams available for review included 45 chest CT exams on 12 patients, 37 musculoskeletal exams on 4 patients, and 10 renal US exams on 5 patients. All 12 had abnormal chest CT exams, with findings including ground-glass opacities (12/12), cysts (8/12), septal thickening (9/12), nodules (8/12), fibrosis (7/12), crazy-paving (2/12), consolidation (1/12), hilar/mediastinal lymphadenopathy (11/12), and chest wall deformity (5/12). Nine had at least one follow-up chest CT, which showed improvement in nodules (7/9), ground-glass opacities (4/9), and lymphadenopathy (9/9), but worsening of septal thickening (3/9), cyst formation (3/9), and fibrosis (3/9). Four had musculoskeletal imaging revealing synovitis (2/4), bone erosions (1/4), tenosynovitis (1/4), enthesitis (1/4), and subcutaneous nodules (1/4). Five had at least one renal US, revealing renal size abnormalities (4/5) and cortical hyperechogenicity (3/5). CONCLUSION The most prevalent imaging finding of COPA syndrome is diffuse lung disease related to early childhood-onset recurrent pulmonary hemorrhage and lymphoid hyperplasia that may progress to pulmonary fibrosis. Other imaging findings manifesting later in childhood or adolescence relate to arthritis and glomerulonephritis.
Collapse
Affiliation(s)
- HaiThuy N Nguyen
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| | - Rida Salman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA.
| | - Tiphanie P Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Manuel Silva-Carmona
- Pulmonary Division, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marietta DeGuzman
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - R Paul Guillerman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| |
Collapse
|