1
|
Ahn S, Jain A, Kasuba KC, Seimiya M, Okamoto R, Treutlein B, Müller DJ. Engineering fibronectin-templated multi-component fibrillar extracellular matrices to modulate tissue-specific cell response. Biomaterials 2024; 308:122560. [PMID: 38603826 DOI: 10.1016/j.biomaterials.2024.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland.
| | - Akanksha Jain
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Krishna Chaitanya Kasuba
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Makiko Seimiya
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Ryoko Okamoto
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Barbara Treutlein
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Fu S, Li H, Wu Y, Wang J. Nano-/micro-scaled hydroxyapatite ceramic construction and the regulation of immune-associated osteogenic differentiation. J Biomed Mater Res A 2024; 112:193-209. [PMID: 37680167 DOI: 10.1002/jbm.a.37606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Hydroxyapatite (HA) bioceramic is a promising substitute for bone defects, and the surface properties are major factors that influence bioactivity and osteoinductivity. In this study, two kinds of HA bioceramics with nanoscale (n-HA) and microscale (m-HA) surface topography were designed to mimic the natural bone, thus enhancing the stimulation of osteogenic differentiation and revealing the potential mechanism. Compared to m-HA, n-HA owned a larger surface roughness, a stronger wettability, and reduced hardness and indentation modulus. Based on these properties, n-HA could maintain the conformation of vitronectin better than m-HA, which may contribute to higher cellular activities and a stronger promotion of osteogenic differentiation of mesenchymal stem cells (MSCs). Further RNA sequencing analysis compared the molecular expression between n-HA and m-HA. Six hundred twenty-seven differentially expressed genes were identified in MSCs, and 17 upregulated genes and 610 downregulated genes were included when n-HA compared to m-HA. The GO cluster analysis and enriched Kyoto encyclopedia of genes and genome signaling pathways revealed a close correlation with the immune process in both upregulated (chemokine signaling pathway and cytokine-cytokine receptor interaction) and downregulated pathways (osteoclasts differentiation). It suggested that the nanoscale surface topography of HA enhanced the osteoinductivity of MSCs and could not be separated from its regulation of immune function and the retention of adsorbed protein conformation.
Collapse
Affiliation(s)
- Shijia Fu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huishan Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Wu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
3
|
Ahn S, Sharma U, Kasuba KC, Strohmeyer N, Müller DJ. Engineered Biomimetic Fibrillar Fibronectin Matrices Regulate Cell Adhesion Initiation, Migration, and Proliferation via α5β1 Integrin and Syndecan-4 Crosstalk. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300812. [PMID: 37357136 PMCID: PMC10460904 DOI: 10.1002/advs.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Indexed: 06/27/2023]
Abstract
Cells regulate adhesion to the fibrillar extracellular matrix (ECM) of which fibronectin is an essential component. However, most studies characterize cell adhesion to globular fibronectin substrates at time scales long after cells polarize and migrate. To overcome this limitation, a simple and scalable method to engineer biomimetic 3D fibrillar fibronectin matrices is introduced and how they are sensed by fibroblasts from the onset of attachment is characterized. Compared to globular fibronectin substrates, fibroblasts accelerate adhesion initiation and strengthening within seconds to fibrillar fibronectin matrices via α5β1 integrin and syndecan-4. This regulation, which additionally accelerates on stiffened fibrillar matrices, involves actin polymerization, actomyosin contraction, and the cytoplasmic proteins paxillin, focal adhesion kinase, and phosphoinositide 3-kinase. Furthermore, this immediate sensing and adhesion of fibroblast to fibrillar fibronectin guides migration speed, persistency, and proliferation range from hours to weeks. The findings highlight that fibrillar fibronectin matrices, compared to widely-used globular fibronectin, trigger short- and long-term cell decisions very differently and urge the use of such matrices to better understand in vivo interactions of cells and ECMs. The engineered fibronectin matrices, which can be printed onto non-biological surfaces without loss of function, open avenues for various cell biological, tissue engineering and medical applications.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Upnishad Sharma
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Krishna Chaitanya Kasuba
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Daniel J. Müller
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| |
Collapse
|
4
|
Xiao Y, Donnelly H, Sprott M, Luo J, Jayawarna V, Lemgruber L, Tsimbouri PM, Meek RD, Salmeron-Sanchez M, Dalby MJ. Material-driven fibronectin and vitronectin assembly enhances BMP-2 presentation and osteogenesis. Mater Today Bio 2022; 16:100367. [PMID: 35937570 PMCID: PMC9352550 DOI: 10.1016/j.mtbio.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering strategies are of interest in the field of bone tissue regenerative medicine. MSCs are commonly investigated in combination with growth factors (GFs) and biomaterials to provide a regenerative environment for the cells. However, optimizing how biomaterials interact with MSCs and efficiently deliver GFs, remains a challenge. Here, via plasma polymerization, tissue culture plates are coated with a layer of poly (ethyl acrylate) (PEA), which is able to spontaneously permit fibronectin (FN) to form fibrillar nanonetworks. However, vitronectin (VN), another important extracellular matrix (ECM) protein forms multimeric globules on the polymer, thus not displaying functional groups to cells. Interestingly, when FN and VN are co-absorbed onto PEA surfaces, VN can be entrapped within the FN fibrillar nanonetwork in the monomeric form providing a heterogeneous, open ECM network. The combination of FN and VN promote MSC adhesion and leads to enhanced GF binding; here we demonstrate this with bone morphogenetic protein-2 (BMP2). Moreover, MSC differentiation into osteoblasts is enhanced, with elevated expression of osteopontin (OPN) and osteocalcin (OCN) quantified by immunostaining, and increased mineralization observed by von Kossa staining. Osteogenic intracellular signalling is also induced, with increased activity in the SMAD pathway. The study emphasizes the need of recapitulating the complexity of native ECM to achieve optimal cell-material interactions. Vitronectin can be incorporated within fibronectin fibril networks upon co-coating onto poly (ethyl acrylate) modified surfaces. Fibronectin and vitronectin networks promote mesenchymal stem cell adhesion and induce α5 integrin clustering. Fibronectin and vitronectin nanonetworks improve bone morphogenetic protein-2 presentation to mesenchymal stem cells and thus facilitates osteogenesis.
Collapse
|
5
|
Lam M, Falentin-Daudré C. Characterization of plasmatic proteins adsorption on poly(styrene sodium sulfonate) functionalized silicone surfaces. Biophys Chem 2022; 285:106804. [PMID: 35339945 DOI: 10.1016/j.bpc.2022.106804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
Proteins adsorption occurs spontaneously on biomaterial upon insertion within the body. The resulting protein layer influences biomaterial biocompatibility through enhanced bio-integration or, on the contrary, adverse reactions. Furthermore, upon adsorption, proteins can undergo modifications of their structure and, ultimately, their physicochemical properties and activity. Hence, the understanding of protein adsorption on implanted materials appears essential, as exemplified by silicone breast prostheses that might lead to serious health issues. Surface modifications with a bioactive polymer, poly(styrene sodium sulfonate)-polyNaSS, on a hydrophobic silicone surface that composes breast implants, have been successfully performed under UV irradiation by a radical surface polymerization. This strategy enhances cell biocompatibility and antibacterial features. Although detailed insights related to the mechanism are still scarce, polyNaSS is supposed to promote changes in the conformation and/or orientation of adsorbed plasma proteins, reducing the odd for a biofilm to form. The present work addresses more in-depth structural investigations of the adsorbed state of two plasma proteins: Bovine Serum Albumin (BSA), as a model protein, and fibronectin (FN), for its role in cell adhesion. Using Atomic force microscopy (AFM), we report that polyNaSS showed no significant impact on the BSA structure conversely to the FN one. However, imaging findings with AFM clearly outlined a change in the structural organization of FN, going from a nano fibrillar assembly with an average length of 130 nm to a globular one when the surface was grafted. Thus, it is highlighted that polyNaSS interacts specifically with FN. In addition, cell spreading assay of L929 fibroblasts on FN-coated surfaces with optical microscopy indicated no significant impact of the change in FN structure upon fibroblasts adhesion, which displayed active elongated shapes. The present features are crucial for understanding the cell adhesion mechanism induced by surface modification.
Collapse
Affiliation(s)
- M Lam
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue JB Clément, 93430 Villetaneuse, France
| | - C Falentin-Daudré
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, 99 avenue JB Clément, 93430 Villetaneuse, France.
| |
Collapse
|
6
|
Sun S, Deng P, Mu L, Hu X, Guo S. Bionanoscale Recognition Underlies Cell Fate and Therapy. Adv Healthc Mater 2021; 10:e2101260. [PMID: 34523248 DOI: 10.1002/adhm.202101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Indexed: 11/09/2022]
Abstract
Understanding the bionanoscale recognition of nanostructured architectures is critical to the design and application of nanomaterials, but the related information is not well understood. In this study, it is found that bionanoscale recognition underlies cell fate and therapy. For example, 1T phase (octahedral coordination) monolayer MoS2 exhibits a markedly stronger affinity for fibronectin than the 2H structure (triangular prism coordination) and promotes cell spreading and differentiation. The van der Waals energy and increased turn components contribute to the high adhesion of fibronectin onto the 1T-MoS2 structure. 1T-MoS2 exhibits a significantly stronger affinity (KD , 6.59 × 10-7 m) for liposomes than 2H-MoS2 (1.21 × 10-6 m) due to strong hydrophobic interactions. The existence of octahedrally coordinated atomic structures that improve cell viability by enhancing the neurite length is first proven by random forest and structural equation models. Consequently, octahedral coordination disaggregates α-synuclein (e.g., by decreasing β-sheets and increasing coil structures) and protects cells and hosts against Parkinson's disease. As a proof-of-principle demonstration, these findings indicate that bionanoscale recognition underlies the design of biomaterials and cell therapeutics.
Collapse
Affiliation(s)
- Shan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Li Mu
- Tianjin Key Laboratory of Agro‐environment and Safe‐product Key Laboratory for Environmental Factors Control of Agro‐product Quality Safety (Ministry of Agriculture and Rural Affairs) Institute of Agro‐environmental Protection Ministry of Agriculture and Rural Affairs Tianjin 300191 China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| |
Collapse
|
7
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
8
|
Talin1 regulates the endometrial epithelial cell adhesive capacity by interacting with LASP1 and Vitronectin. Reprod Biol 2020; 20:229-236. [PMID: 32113856 DOI: 10.1016/j.repbio.2020.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023]
Abstract
The endometrium is a highly complex tissue that is vulnerable to subtle gene expression changes and is the first point of contact for an implanting blastocyst. Talin1 has previously been identified to regulate cytoskeleton and cell motility, however it has not been investigated in association with infertility. Herein, we presented that Talin1 dysregulation in the missed abortion endometrium would negatively influence endometrial adhesive capacity. Mechanistically, intracellular Talin1 inhibited the nuclear transportation of LIM and SH3 protein 1 (LASP1) and restored the expression of adhesion-associated protein. Moreover, extracellular Talin1 enforces endometrial epithelial cell adhesive capacity by interacting with Vitronectin (VTN) and activating the FAK/Src/ERK signalling pathway. This finding provides a novel insight into the potential use of Talin1 for managing endometrial epithelia cell adhesion. This study represents the first demonstration of Talin1 function in endometrial epithelial cell adhesion and endometrial receptivity. Our findings indicate that re-expression of Talin1 might represent a useful strategy for preventing and treating early pregnancy failure and infertility.
Collapse
|
9
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
10
|
Sprott MR, Gallego‐Ferrer G, Dalby MJ, Salmerón‐Sánchez M, Cantini M. Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Adv Healthc Mater 2019; 8:e1801469. [PMID: 30609243 DOI: 10.1002/adhm.201801469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Poly-l-lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently bioactive. Thus, here, a novel process is presented to functionalize PLLA surfaces with poly(ethyl acrylate) (PEA) brushes to provide biological functionality through PEA's ability to induce spontaneous organization of the extracellular matrix component fibronectin (FN) into physiological-like nanofibrils. This process allows control of surface biofunctionality while maintaining PLLA bulk properties (i.e., degradation profile, mechanical strength). The new approach is based on surface-initiated atomic transfer radical polymerization, which achieves a molecularly thin coating of PEA on top of the underlying PLLA. Beside surface characterization via atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle to measure PEA grafting, the biological activity of this surface modification is investigated. PEA brushes trigger FN organization into nanofibrils, which retain their ability to enhance adhesion and differentiation of C2C12 cells. The results demonstrate the potential of this technology to engineer controlled microenvironments to tune cell fate via biologically active surface modification of an otherwise bioinert biodegradable polymer, gaining wide use in tissue engineering applications.
Collapse
Affiliation(s)
- Mark Robert Sprott
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| | - Gloria Gallego‐Ferrer
- Center for Biomaterials and Tissue EngineeringUniversitat Politècnica de València Valencia 46022 Spain
- Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN) Valencia 46022 Spain
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| | | | - Marco Cantini
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| |
Collapse
|
11
|
Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13:4445-4459. [PMID: 30122919 PMCID: PMC6078075 DOI: 10.2147/ijn.s170745] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology is an interdisciplinary science that has developed rapidly in recent years. Metallic nanoparticles (NPs) are increasingly utilized in dermatology and cosmetology, because of their unique properties. However, skin exposure to NPs raises concerns regarding their transdermal toxicity. The tight junctions of epithelial cells form the skin barrier, which protects the host against external substances. Recent studies have found that NPs can pass through the skin barrier into deeper layers, indicating that skin exposure is a means for NPs to enter the body. The distribution and interaction of NPs with skin cells may cause toxic side effects. In this review, possible penetration pathways and related toxicity mechanisms are discussed. The limitations of current experimental methods on the penetration and toxic effects of metallic NPs are also described. This review contributes to a better understanding of the risks of topically applied metallic NPs and provides a foundation for future studies.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| | - Xuan Lai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| |
Collapse
|