1
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
2
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
3
|
Ma S, Zhao H, Galan EA. Integrating Engineering, Automation, and Intelligence to Catalyze the Biomedical Translation of Organoids. Adv Biol (Weinh) 2021; 5:e2100535. [PMID: 33984193 DOI: 10.1002/adbi.202100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Organoid technology has developed at an impressive speed during the past decade. Still, organoids are not widely used in practical applications as expected. It is believed that this translation can be greatly accelerated with the integration of engineering and artificial intelligence into current research practices. It is proposed that this approach is the missing link to realize key milestones in organoid technology, namely, high-throughput, homogeneous, and standardized production, automated manipulation, and intelligent monitoring, evaluation, and control via integrated on-chip instrumentation and artificial intelligence. It is suggested that organoids-on-a-chip are the ideal platform to achieve these feats. Once these techniques are established and adopted by the scientific community, the rapid translation of organoids may be seen from laboratories to the clinics and pharmaceutical industry.
Collapse
Affiliation(s)
- Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Haoran Zhao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Edgar A Galan
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, Willerth S, Walus K, Mofidfar M, Toyserkani E, Khademhosseini A, Ashammakhi N. Extrusion and Microfluidic-based Bioprinting to Fabricate Biomimetic Tissues and Organs. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1901044. [PMID: 33072855 PMCID: PMC7567134 DOI: 10.1002/admt.201901044] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/10/2020] [Indexed: 05/07/2023]
Abstract
Next generation engineered tissue constructs with complex and ordered architectures aim to better mimic the native tissue structures, largely due to advances in three-dimensional (3D) bioprinting techniques. Extrusion bioprinting has drawn tremendous attention due to its widespread availability, cost-effectiveness, simplicity, and its facile and rapid processing. However, poor printing resolution and low speed have limited its fidelity and clinical implementation. To circumvent the downsides associated with extrusion printing, microfluidic technologies are increasingly being implemented in 3D bioprinting for engineering living constructs. These technologies enable biofabrication of heterogeneous biomimetic structures made of different types of cells, biomaterials, and biomolecules. Microfluiding bioprinting technology enables highly controlled fabrication of 3D constructs in high resolutions and it has been shown to be useful for building tubular structures and vascularized constructs, which may promote the survival and integration of implanted engineered tissues. Although this field is currently in its early development and the number of bioprinted implants is limited, it is envisioned that it will have a major impact on the production of customized clinical-grade tissue constructs. Further studies are, however, needed to fully demonstrate the effectiveness of the technology in the lab and its translation to the clinic.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Hossein Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Marco Costantini
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
- Institute of Physical Chemistry – Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Stephanie Willerth
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada
| | - Konrad Walus
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Mofidfar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ehsan Toyserkani
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Xie R, Korolj A, Liu C, Song X, Lu RXZ, Zhang B, Ramachandran A, Liang Q, Radisic M. h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier. ACS CENTRAL SCIENCE 2020; 6:903-912. [PMID: 32607437 PMCID: PMC7318083 DOI: 10.1021/acscentsci.9b01097] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 05/07/2023]
Abstract
Kidney-on-a-chip devices may revolutionize the discovery of new therapies. However, fabricating a 3D glomerulus remains a challenge, due to a requirement for a microscale soft material with complex topography to support cell culture in a native configuration. Here, we describe the use of microfluidic spinning to recapitulate complex concave and convex topographies over multiple length scales, required for biofabrication of a biomimetic 3D glomerulus. We produced a microfluidic extruded topographic hollow fiber (h-FIBER), consisting of a vessel-like perfusable tubular channel for endothelial cell cultivation, and a glomerulus-like knot with microconvex topography on its surface for podocyte cultivation. Meter long h-FIBERs were produced in microfluidics within minutes, followed by chemically induced inflation for generation of topographical cues on the 3D scaffold surface. The h-FIBERs were assembled into a hot-embossed plastic 96-well plate. Long-term perfusion, podocyte barrier formation, endothelialization, and permeability tests were easily performed by a standard pipetting technique on the platform. Following long-term culture (1 month), a functional filtration barrier, measured by the transfer of albumin from the blood vessel side to the ultrafiltrate side, suggested the establishment of an engineered glomerulus.
Collapse
Affiliation(s)
- Ruoxiao Xie
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Beijing Key Lab of Microanalytical Methods & Instrumentation,
Department of Chemistry, Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Anastasia Korolj
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Chuan Liu
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Xin Song
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Rick Xing Ze Lu
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Boyang Zhang
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Arun Ramachandran
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| | - Qionglin Liang
- MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Beijing Key Lab of Microanalytical Methods & Instrumentation,
Department of Chemistry, Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Milica Radisic
- Institute
for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5T 3A1, Canada
| |
Collapse
|
6
|
Luo J, Fan JB, Wang S. Recent Progress of Microfluidic Devices for Hemodialysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904076. [PMID: 31535786 DOI: 10.1002/smll.201904076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Microfluidic hemodialysis techniques have recently attracted great attention in the treatment of kidney disease due to their advantages of portability and wearability as well as their great potential for replacing clinical hospital-centered blood purification with continuous in-home hemodialysis. This Review summarizes the recent progress in microfluidic devices for hemodialysis. First, the history of kidney-inspired hemodialysis is introduced. Then, recent achievements in the preparation of microfluidic devices and hemodialysis nanoporous membrane materials are presented and categorized. Subsequently, attention is drawn to the recent progress of nanoporous membrane-based microfluidic devices for hemodialysis. Finally, the challenges and opportunities of hemodialysis microfluidic devices in the future are also discussed. This Review is expected to provide a comprehensive guide for the design of hemodialysis microfluidic devices that are closely related to clinical applications.
Collapse
Affiliation(s)
- Jing Luo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Zhao Q, Cui H, Wang Y, Du X. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903798. [PMID: 31650698 DOI: 10.1002/smll.201903798] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Indexed: 05/16/2023]
Abstract
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine-related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic-based materials in the fields of diagnostics, drug delivery, organs-on-chips, tissue engineering, and stimuli-responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on-demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| |
Collapse
|
8
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Salerno A, Cesarelli G, Pedram P, Netti PA. Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs. J Clin Med 2019; 8:E1816. [PMID: 31683796 PMCID: PMC6912533 DOI: 10.3390/jcm8111816] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/07/2023] Open
Abstract
Engineering three-dimensional (3D) scaffolds for functional tissue and organ regeneration is a major challenge of the tissue engineering (TE) community. Great progress has been made in developing scaffolds to support cells in 3D, and to date, several implantable scaffolds are available for treating damaged and dysfunctional tissues, such as bone, osteochondral, cardiac and nerve. However, recapitulating the complex extracellular matrix (ECM) functions of native tissues is far from being achieved in synthetic scaffolds. Modular TE is an intriguing approach that aims to design and fabricate ECM-mimicking scaffolds by the bottom-up assembly of building blocks with specific composition, morphology and structural properties. This review provides an overview of the main strategies to build synthetic TE scaffolds through bioactive modules assembly and classifies them into two distinct schemes based on microparticles (µPs) or patterned layers. The µPs-based processes section starts describing novel techniques for creating polymeric µPs with desired composition, morphology, size and shape. Later, the discussion focuses on µPs-based scaffolds design principles and processes. In particular, starting from random µPs assembly, we will move to advanced µPs structuring processes, focusing our attention on technological and engineering aspects related to cell-free and cell-laden strategies. The second part of this review article illustrates layer-by-layer modular scaffolds fabrication based on discontinuous, where layers' fabrication and assembly are split, and continuous processes.
Collapse
Affiliation(s)
- Aurelio Salerno
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
| | - Giuseppe Cesarelli
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Parisa Pedram
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy.
| |
Collapse
|
10
|
Ma S. Microfluidics tubing as a synthesizer for ordered microgel networks. SOFT MATTER 2019; 15:3848-3853. [PMID: 31032832 DOI: 10.1039/c9sm00626e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ordered microgel networks have undergone extensive research and shown translational promise in tissue engineering, precision and regenerative medicine, controlled delivery, optics and electronics, etc. Here, we introduce a new low-cost and efficient synthesizer for ordered microgel networks. The gel precursor microdroplets are formulated and incubated in a microfluidics tubing system to obtain tailorable and reproducible microgels, which are then patterned into networks under the precise spatiotemporal control of the tubing system and integrated either by crosslinking the microgel interfaces or by forming lipid bilayers at the interfaces. The system can synthesize ordered networks out of heterogeneous microgels by withdrawing multi-phase cell-laden or acellular gel precursors into the tubing and gelation, or out of homogeneous microgels by simultaneously injecting gel precursors and immiscible oil into the tubing and gelation. The ordered gel networks are synthesized at the tubing outlet or within a piece of enlarging tubing, where the microgels are collided and glued in defined sequences.
Collapse
Affiliation(s)
- Shaohua Ma
- Shenzhen Engineering Laboratory for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China.
| |
Collapse
|